Road Identification Through Efficient Edge Segmentation Based on Morphological Operations

鉴定(生物学) 分割 计算机科学 GSM演进的增强数据速率 计算机视觉 人工智能 卫星 边缘检测 图像分割 遥感 卫星图像 数据挖掘 图像处理 图像(数学) 地理 工程类 生物 航空航天工程 植物
作者
Bandi Mary Sowbhagya Rani,Vasumathi Devi Majety,Chandra Shaker Pittala,Vallabhuni Vijay,K. Sandeep,S Kiran
出处
期刊:Traitement Du Signal [International Information and Engineering Technology Association]
卷期号:38 (5): 1503-1508 被引量:9
标识
DOI:10.18280/ts.380526
摘要

Road identification from high-precision images is important to programmed mapping, urban planning, and updating geographic information system (GIS) databases. Manual identification of roads is slow, costly, and prone to errors. Therefore, it is a hot topic among remote sensing experts to develop programmed techniques for road identification from satellite images. The main challenge lies in the variation of width and surface contents between roads. This paper presents a road identification and extraction strategy for satellite images. The strategy, denoted as ESMIRMO, recognizes roads in satellite images through edge segmentation, using morphological operations. Specifically, morphological operations were employed to enhance the quality of the original image, laying a good basis for accurate road detection. Next, edge segmentation was adopted to detect the road in the original image accurately. After that, the proposed strategy was compared with traditional methods. The comparison shows that our strategy could identify roads from satellite images more accurately than traditional methods, and overcome many of their limitations. Overall, our strategy manages to enhance the quality of satellite images, pinpoint roads in the enhanced images, and provide drivers and repairers with real-time information on road conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助哈哈呀采纳,获得10
刚刚
刚刚
hurry完成签到,获得积分10
刚刚
Hungrylunch应助陈玉婷采纳,获得20
刚刚
领导范儿应助hu970采纳,获得10
1秒前
new_vision发布了新的文献求助10
1秒前
拼搏翠桃完成签到,获得积分10
2秒前
糖糖科研顺利呀完成签到 ,获得积分10
2秒前
2秒前
阿秋完成签到,获得积分10
2秒前
Pangsj发布了新的文献求助10
3秒前
hhh发布了新的文献求助10
3秒前
好运藏在善良里完成签到,获得积分10
3秒前
情怀应助奋斗映寒采纳,获得10
3秒前
4秒前
CodeCraft应助牧海冬采纳,获得10
4秒前
zxcv23完成签到,获得积分10
4秒前
5秒前
小离发布了新的文献求助10
5秒前
yug完成签到,获得积分10
5秒前
坟里唱情歌完成签到 ,获得积分10
6秒前
kbj完成签到,获得积分10
6秒前
哈哈哈哈完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
科研雷锋发布了新的文献求助10
7秒前
gen完成签到,获得积分10
7秒前
简单的丑完成签到,获得积分10
8秒前
今后应助日天的马铃薯采纳,获得10
8秒前
8秒前
8秒前
我是老大应助Ll采纳,获得10
8秒前
Lance先生完成签到,获得积分10
8秒前
9秒前
ChangSZ完成签到,获得积分10
9秒前
日月山河永在完成签到,获得积分10
9秒前
甜蜜英姑完成签到,获得积分10
10秒前
10秒前
怕黑向秋完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672