Road Identification Through Efficient Edge Segmentation Based on Morphological Operations

鉴定(生物学) 分割 计算机科学 GSM演进的增强数据速率 计算机视觉 人工智能 卫星 边缘检测 图像分割 遥感 卫星图像 数据挖掘 图像处理 图像(数学) 地理 工程类 生物 航空航天工程 植物
作者
Bandi Mary Sowbhagya Rani,Vasumathi Devi Majety,Chandra Shaker Pittala,Vallabhuni Vijay,K. Sandeep,S Kiran
出处
期刊:Traitement Du Signal [International Information and Engineering Technology Association]
卷期号:38 (5): 1503-1508 被引量:9
标识
DOI:10.18280/ts.380526
摘要

Road identification from high-precision images is important to programmed mapping, urban planning, and updating geographic information system (GIS) databases. Manual identification of roads is slow, costly, and prone to errors. Therefore, it is a hot topic among remote sensing experts to develop programmed techniques for road identification from satellite images. The main challenge lies in the variation of width and surface contents between roads. This paper presents a road identification and extraction strategy for satellite images. The strategy, denoted as ESMIRMO, recognizes roads in satellite images through edge segmentation, using morphological operations. Specifically, morphological operations were employed to enhance the quality of the original image, laying a good basis for accurate road detection. Next, edge segmentation was adopted to detect the road in the original image accurately. After that, the proposed strategy was compared with traditional methods. The comparison shows that our strategy could identify roads from satellite images more accurately than traditional methods, and overcome many of their limitations. Overall, our strategy manages to enhance the quality of satellite images, pinpoint roads in the enhanced images, and provide drivers and repairers with real-time information on road conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zx发布了新的文献求助10
刚刚
刚刚
苗条一兰完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
Jing发布了新的文献求助10
2秒前
2秒前
LJX发布了新的文献求助10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
flyfish完成签到,获得积分10
3秒前
bckl888完成签到,获得积分10
3秒前
3秒前
ww发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
ding应助Wanderer采纳,获得10
5秒前
锅包肉爱吃肉完成签到 ,获得积分10
5秒前
HollidayLee完成签到,获得积分10
6秒前
6秒前
默默发布了新的文献求助10
6秒前
zx完成签到,获得积分10
7秒前
王川完成签到,获得积分10
7秒前
bayes111完成签到,获得积分20
7秒前
深情安青应助霍师傅采纳,获得10
8秒前
西鱼发布了新的文献求助10
8秒前
8秒前
Owen应助羊丢丢啊丢丢采纳,获得10
8秒前
旺旺发布了新的文献求助10
9秒前
wangyaofeng发布了新的文献求助10
9秒前
高子懿发布了新的文献求助10
9秒前
Quinn发布了新的文献求助10
9秒前
9秒前
小鹿完成签到,获得积分10
10秒前
c0uVi1完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718202
求助须知:如何正确求助?哪些是违规求助? 5251289
关于积分的说明 15284999
捐赠科研通 4868486
什么是DOI,文献DOI怎么找? 2614197
邀请新用户注册赠送积分活动 1564030
关于科研通互助平台的介绍 1521515