亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Road Identification Through Efficient Edge Segmentation Based on Morphological Operations

鉴定(生物学) 分割 计算机科学 GSM演进的增强数据速率 计算机视觉 人工智能 卫星 边缘检测 图像分割 遥感 卫星图像 数据挖掘 图像处理 图像(数学) 地理 工程类 生物 航空航天工程 植物
作者
Bandi Mary Sowbhagya Rani,Vasumathi Devi Majety,Chandra Shaker Pittala,Vallabhuni Vijay,K. Sandeep,S Kiran
出处
期刊:Traitement Du Signal [International Information and Engineering Technology Association]
卷期号:38 (5): 1503-1508 被引量:9
标识
DOI:10.18280/ts.380526
摘要

Road identification from high-precision images is important to programmed mapping, urban planning, and updating geographic information system (GIS) databases. Manual identification of roads is slow, costly, and prone to errors. Therefore, it is a hot topic among remote sensing experts to develop programmed techniques for road identification from satellite images. The main challenge lies in the variation of width and surface contents between roads. This paper presents a road identification and extraction strategy for satellite images. The strategy, denoted as ESMIRMO, recognizes roads in satellite images through edge segmentation, using morphological operations. Specifically, morphological operations were employed to enhance the quality of the original image, laying a good basis for accurate road detection. Next, edge segmentation was adopted to detect the road in the original image accurately. After that, the proposed strategy was compared with traditional methods. The comparison shows that our strategy could identify roads from satellite images more accurately than traditional methods, and overcome many of their limitations. Overall, our strategy manages to enhance the quality of satellite images, pinpoint roads in the enhanced images, and provide drivers and repairers with real-time information on road conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助Karol采纳,获得10
1秒前
18秒前
23秒前
38秒前
41秒前
LucyMartinez发布了新的文献求助10
44秒前
Karol发布了新的文献求助10
46秒前
二狗完成签到 ,获得积分10
47秒前
CUI666完成签到 ,获得积分10
54秒前
56秒前
56秒前
58秒前
允怡发布了新的文献求助10
1分钟前
LucyMartinez发布了新的文献求助10
1分钟前
黑神白了发布了新的文献求助10
1分钟前
允怡完成签到,获得积分10
1分钟前
zzgpku完成签到,获得积分0
1分钟前
1分钟前
1分钟前
李甄好应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
Lebpom发布了新的文献求助10
1分钟前
1分钟前
blueskyzhi完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
神勇的荔枝完成签到,获得积分20
1分钟前
科研通AI6.1应助12345采纳,获得10
2分钟前
XIANGYI完成签到 ,获得积分10
2分钟前
2分钟前
田様应助一见喜采纳,获得10
2分钟前
2分钟前
12345发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
一见喜发布了新的文献求助10
2分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746620
求助须知:如何正确求助?哪些是违规求助? 5436547
关于积分的说明 15355678
捐赠科研通 4886645
什么是DOI,文献DOI怎么找? 2627324
邀请新用户注册赠送积分活动 1575809
关于科研通互助平台的介绍 1532565