鉴定(生物学)
分割
计算机科学
GSM演进的增强数据速率
计算机视觉
人工智能
卫星
边缘检测
图像分割
遥感
卫星图像
数据挖掘
图像处理
图像(数学)
地理
工程类
生物
航空航天工程
植物
作者
Bandi Mary Sowbhagya Rani,Vasumathi Devi Majety,Chandra Shaker Pittala,Vallabhuni Vijay,K. Sandeep,S Kiran
出处
期刊:Traitement Du Signal
[International Information and Engineering Technology Association]
日期:2021-10-31
卷期号:38 (5): 1503-1508
被引量:9
摘要
Road identification from high-precision images is important to programmed mapping, urban planning, and updating geographic information system (GIS) databases. Manual identification of roads is slow, costly, and prone to errors. Therefore, it is a hot topic among remote sensing experts to develop programmed techniques for road identification from satellite images. The main challenge lies in the variation of width and surface contents between roads. This paper presents a road identification and extraction strategy for satellite images. The strategy, denoted as ESMIRMO, recognizes roads in satellite images through edge segmentation, using morphological operations. Specifically, morphological operations were employed to enhance the quality of the original image, laying a good basis for accurate road detection. Next, edge segmentation was adopted to detect the road in the original image accurately. After that, the proposed strategy was compared with traditional methods. The comparison shows that our strategy could identify roads from satellite images more accurately than traditional methods, and overcome many of their limitations. Overall, our strategy manages to enhance the quality of satellite images, pinpoint roads in the enhanced images, and provide drivers and repairers with real-time information on road conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI