Hyperspectral Target Detection: Hypothesis Testing, Signal-to-Noise Ratio, and Spectral Angle Theories

符号 先验与后验 算法 计算机科学 数学 人工智能 哲学 算术 认识论
作者
Chein‐I Chang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-23 被引量:71
标识
DOI:10.1109/tgrs.2021.3069716
摘要

Hyperspectral target detection (HTD) can be generally categorized by its targets to be detected, $a$ priori targets with provided known target knowledge as $a$ priori target detection and $a$ posteriori targets with known target signatures (spectral shapes), but unknown abundance fractions needed to be estimated as $a$ posteriori target detection. As a result, target detection can be performed in three scenarios, full pure-pixel target detection corresponding to $a$ priori target detection, and subpixel and mixed-pixel target detection corresponding to $a$ posteriori target detection. To develop theories for these three types of target detection, this article develops three approaches. One is to rederive hypothesis testing-based detection theory using very basic statistical detection theory. Another two are new theories, signal-to-noise ratio (SNR)-based detection theory that uses SNR as a criterion to derive optimal detectors and spectral angle (SA)-based detection theory that calculates SA to perform HTD, both of which do not require prior probability distributions as hypothesis testing does. Specifically, it will be shown that many current hypothesis testing-derived likelihood ratio test (LRT)-based detectors can find their counterparts in the SNR-derived theory and the SA-derived detection theory. Finally, to evaluate the detection performance among the detectors developed from these three approaches, several effective detection measures resulting from 3-D receiver operating characteristic (ROC) analysis are used to conduct a comprehensive study and comparative analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
含糊的文涛完成签到,获得积分20
刚刚
1秒前
北大荒发布了新的文献求助10
1秒前
2秒前
2秒前
18183389686完成签到,获得积分10
2秒前
3秒前
秋雨发布了新的文献求助10
3秒前
3秒前
周全敏发布了新的文献求助20
3秒前
萄哥布鸽发布了新的文献求助10
5秒前
JosephCobb发布了新的文献求助10
5秒前
18183389686发布了新的文献求助10
6秒前
6秒前
多巴不胺发布了新的文献求助10
6秒前
852应助爱笑以松采纳,获得10
6秒前
Patrick发布了新的文献求助10
7秒前
我真找不到应助影1采纳,获得50
7秒前
赘婿应助鳗鱼山河采纳,获得10
8秒前
8秒前
SciGPT应助旋光活性采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
聪慧冰淇淋完成签到 ,获得积分10
9秒前
10秒前
10秒前
英俊的铭应助TTRRCEB采纳,获得10
10秒前
11秒前
xyg发布了新的文献求助10
11秒前
CipherSage应助木子采纳,获得10
11秒前
声声发布了新的文献求助10
11秒前
动听曼卉完成签到 ,获得积分10
11秒前
汉堡包应助值得采纳,获得10
12秒前
狂野的凝莲关注了科研通微信公众号
13秒前
小马甲应助爱吃米线采纳,获得10
13秒前
爆米花应助Pluto采纳,获得30
14秒前
aliensinger发布了新的文献求助10
14秒前
JosephCobb完成签到,获得积分10
15秒前
wwwwyx完成签到,获得积分10
15秒前
哈哈发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663524
求助须知:如何正确求助?哪些是违规求助? 4850541
关于积分的说明 15104701
捐赠科研通 4821750
什么是DOI,文献DOI怎么找? 2580972
邀请新用户注册赠送积分活动 1535170
关于科研通互助平台的介绍 1493501