塑料薄膜
稻草
氮气
地膜覆盖
肥料
作物产量
野外试验
生产力
农业
作物
用水效率
作者
Jeong Gu Lee,Ho Gyeong Chae,Hyun Young Hwang,Pil Joo Kim,Song Rae Cho
标识
DOI:10.1016/j.scitotenv.2021.147503
摘要
Winter cover crop cultivation and its biomass recycling as green manure (GM) were accepted as an ideal nutrient management practice in temperate organic farming fields. Since its biomass growth was boosted with air temperature rising from late Spring to early Summer, this stage overlapped with cash crops' seeding or transplanting. Thus, organic farmers were suffering from low crop productivity, due to delayed mineralization of incorporated biomass. To accelerate the mineralization of biomass nutrients and control weeds, plastic film mulching (PM) was broadly utilized in organic farming fields of temperate-monsoon climate region. However, the effect of PM on increasing nutrient use efficiency was not properly quantified in GM amended soil. To determine the effect of PM on crop productivity and nutrient use efficiency in GM amended soils, PM and no-mulching treatments were installed under different levels of GM biomass amended soils (0, 25, 50 and 100% of harvested aboveground biomass). The biomass productivity of barley and hairy vetch mixture as cover crop and biomass nitrogen productivity were dramatically increased from the mid May to the early June. PM significantly improved soil temperature and moisture regimes during maize cropping seasons, and then increased inorganic N (NH4+ and NO3-) contents in soils. These improved soil properties under PM highly increased maize productivity and nitrogen use efficiency (NUE). Comparing with no-mulching, as GM application level was increased, the effect of PM on increasing maize productivity became greater, but its effect on increasing NUE became smaller. In conclusion, PM could be very useful tool to improve productivity and NUE of cash crop maize in organic cropping fields, in which the harvesting time of GM biomass might be sustained to increase GM biomass productivity.
科研通智能强力驱动
Strongly Powered by AbleSci AI