Semi-Supervised Learning With Label Proportion

基数(数据建模) 多标签分类 计算机科学 次模集函数 人工智能 整数(计算机科学) 机器学习 符号 一致性(知识库) 数学 数据挖掘 数学优化 算术 程序设计语言
作者
Ningzhao Sun,Tingjin Luo,Wenzhang Zhuge,Hong Tao,Chenping Hou,Dewen Hu
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:35 (1): 877-890 被引量:1
标识
DOI:10.1109/tkde.2021.3076457
摘要

The scarcity of labels is common and great challenge in traditional supervised learning. Semi-supervised learning (SSL) leverages unlabeled samples to alleviate the absence of label information. Similar with annotation, label proportion is another type of prior information and plays a significant role in classification tasks. Compared with the acquisition of labels, label proportion can be obtained more easily. For example, only a small number of patients have been diagnosed with or not with cancers in hospital database, while the proportion with cancer can be generally estimated by historical records. How to incorporate such prior information of label proportion is crucial but rarely studied in literature. Traditional SSL methods often ignore this prior information and will lead to performance degradation inevitably. To solve this problem, we propose a novel SSL with Label Proportion (SSLLP). Our approach encourages to preserve label consistency and label proportion by imposing the cardinality bound constraints. Our formulated problem equals to a mixed-integer constrained submodular minimization and it is difficult to be solved directly. Therefore, we transformed the original problem into a convex one by Lov $\acute{\text{a}}$ sz extension and designed an efficient solving algorithm. Extensive experimental results present the improved performance of our method over several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
蔡余文完成签到,获得积分10
1秒前
1秒前
张一诺021222完成签到,获得积分10
1秒前
1秒前
orixero应助sususu采纳,获得10
2秒前
dild完成签到,获得积分10
2秒前
大胆白凝发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
dild发布了新的文献求助10
5秒前
6秒前
WZZ关注了科研通微信公众号
6秒前
领导范儿应助大胆白凝采纳,获得10
7秒前
7秒前
FIN应助111舒舒采纳,获得10
8秒前
FIN应助111舒舒采纳,获得10
8秒前
8秒前
12发布了新的文献求助10
8秒前
小艾冂学发布了新的文献求助10
9秒前
柯一一应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
我嘞个豆应助科研通管家采纳,获得20
10秒前
10秒前
10秒前
酷波er应助科研通管家采纳,获得10
11秒前
11秒前
英姑应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
chenhbin应助科研通管家采纳,获得10
11秒前
13秒前
13秒前
CL发布了新的文献求助10
14秒前
汉堡包应助12采纳,获得10
14秒前
14秒前
15秒前
爱我嫉妒我完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952868
求助须知:如何正确求助?哪些是违规求助? 3498310
关于积分的说明 11091370
捐赠科研通 3228948
什么是DOI,文献DOI怎么找? 1785159
邀请新用户注册赠送积分活动 869202
科研通“疑难数据库(出版商)”最低求助积分说明 801377