Semi-Supervised Learning With Label Proportion

基数(数据建模) 多标签分类 计算机科学 次模集函数 人工智能 整数(计算机科学) 机器学习 符号 一致性(知识库) 数学 数据挖掘 数学优化 算术 程序设计语言
作者
Ningzhao Sun,Tingjin Luo,Wenzhang Zhuge,Hong Tao,Chenping Hou,Dewen Hu
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (1): 877-890 被引量:1
标识
DOI:10.1109/tkde.2021.3076457
摘要

The scarcity of labels is common and great challenge in traditional supervised learning. Semi-supervised learning (SSL) leverages unlabeled samples to alleviate the absence of label information. Similar with annotation, label proportion is another type of prior information and plays a significant role in classification tasks. Compared with the acquisition of labels, label proportion can be obtained more easily. For example, only a small number of patients have been diagnosed with or not with cancers in hospital database, while the proportion with cancer can be generally estimated by historical records. How to incorporate such prior information of label proportion is crucial but rarely studied in literature. Traditional SSL methods often ignore this prior information and will lead to performance degradation inevitably. To solve this problem, we propose a novel SSL with Label Proportion (SSLLP). Our approach encourages to preserve label consistency and label proportion by imposing the cardinality bound constraints. Our formulated problem equals to a mixed-integer constrained submodular minimization and it is difficult to be solved directly. Therefore, we transformed the original problem into a convex one by Lov $\acute{\text{a}}$ sz extension and designed an efficient solving algorithm. Extensive experimental results present the improved performance of our method over several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ZhenpuWang完成签到,获得积分10
3秒前
3秒前
任性青烟完成签到,获得积分10
3秒前
3秒前
4秒前
背后归尘完成签到,获得积分10
6秒前
8秒前
9秒前
10秒前
11秒前
15秒前
清爽的真完成签到,获得积分10
16秒前
NZH发布了新的文献求助10
17秒前
自建完成签到,获得积分10
20秒前
贪玩的雁凡完成签到,获得积分10
21秒前
半糖完成签到,获得积分10
24秒前
25秒前
小高加油完成签到,获得积分10
27秒前
purple完成签到 ,获得积分10
27秒前
所所应助999z采纳,获得10
29秒前
29秒前
Mrmaxist发布了新的文献求助10
30秒前
不配.应助喜悦宛凝采纳,获得10
31秒前
李健的小迷弟应助ljs采纳,获得10
33秒前
NZH关闭了NZH文献求助
38秒前
40秒前
自信若灵完成签到 ,获得积分10
40秒前
顾矜应助科研通管家采纳,获得10
44秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
852应助科研通管家采纳,获得10
44秒前
研友_VZG7GZ应助sam采纳,获得10
44秒前
纯情的谷云完成签到 ,获得积分10
44秒前
啸海发布了新的文献求助10
44秒前
45秒前
bonnie发布了新的文献求助30
52秒前
52秒前
55秒前
sam发布了新的文献求助10
56秒前
zyt应助meimei采纳,获得10
58秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082501
求助须知:如何正确求助?哪些是违规求助? 2735655
关于积分的说明 7538441
捐赠科研通 2385263
什么是DOI,文献DOI怎么找? 1264761
科研通“疑难数据库(出版商)”最低求助积分说明 612786
版权声明 597665