比例危险模型
生物
基因
单变量
Lasso(编程语言)
癌症
肿瘤科
生存分析
内科学
单变量分析
缺氧(环境)
生物信息学
基因签名
遗传学
多元分析
医学
多元统计
基因表达
统计
万维网
计算机科学
有机化学
化学
氧气
数学
作者
Junyu Huo,Liqun Wu,Yunjin Zang
出处
期刊:Epigenomics
[Future Medicine]
日期:2021-06-01
卷期号:13 (11): 875-890
被引量:21
标识
DOI:10.2217/epi-2020-0411
摘要
Aims: To investigate the prognostic significance of hypoxia- and ferroptosis-related genes for gastric cancer (GC). Materials & methods: We extracted data on 259 hypoxia- and ferroptosis-related genes from The Cancer Genome Atlas and identified the differentially expressed genes between normal (n = 32) and tumor (n = 375) tissues. A risk score was established by univariate Cox regression analysis and LASSO penalized Cox regression analysis. Results: The risk score contained eight genes showed good performance in predicting overall survival and relapse-free survival in GC patients in both the training cohort (The Cancer Genome Atlas, n = 350) and the testing cohorts (GSE84437, n = 431; GSE62254, n = 300; GSE15459, n = 191; GSE26253, n = 432). Conclusion: The eight-gene signature may help to the improve the prognostic risk classification of GC.
科研通智能强力驱动
Strongly Powered by AbleSci AI