材料科学
沸石咪唑盐骨架
化学工程
热解
电催化剂
甲醇
纳米技术
金属有机骨架
氧还原反应
多孔性
碳纤维
催化作用
咪唑酯
吸附
电极
复合材料
复合数
电化学
化学
有机化学
物理化学
工程类
作者
Fuhao Fang,Zhengyu Wu,Dong Zheng,Mengquan Guo,Xiangxiang Li,Zhenguo Li,Yadan Wei,Xianhua Liu,Yindong Tong,Xu Dong,Yiren Lu,Lihong Zhang
标识
DOI:10.1007/s10853-021-06167-8
摘要
Designing reasonable MOFs-derived carbon materials to further effectively improve the catalytic activity toward ORR in the practical application of fuel cells is very necessary but remains a great challenge. Herein, a new facile yet robust strategy, self-sacrifice template approach combined with a variety of MOFs, to achieve core–shell ZnO@zeolitic imidazolate frameworks precursor (ZnO@ZIF-8@ZIF-67) is developed. Subsequently, the porous hybrid hollow carbon shell (Zn/Co-NC) can be obtained by calcinating the precursor. Impressively, the Zn/Co-NC-800 prepared by pyrolysis at 800 °C manifests excellent ORR performances with a positive onset potential of 1.03 V (vs. reversible hydrogen electrode) (vs. RHE), a more positive half-wave potential at 0.856 V (vs. RHE, a positive shift of 28 mV compared with the Pt/C) and 4-electron pathway (n = 3.80). Also, it performs higher long-term stability (only a 7.9% decay of initial current density after 20000 s) and better methanol tolerance in comparison with the traditional Pt/C in alkaline media. In our current work, the synthesis strategy of the self-sacrificing template combined with ZIFs opens up a new route for the preparation of highly efficient non-precious metal electrocatalysts for ORR.
科研通智能强力驱动
Strongly Powered by AbleSci AI