Advanced deep learning methodology for accurate, real-time segmentation of high-resolution intravascular ultrasound images

血管内超声 分割 医学 人工智能 管腔(解剖学) 豪斯多夫距离 深度学习 冠状动脉 模式识别(心理学) 计算机科学 计算机视觉 放射科 动脉 心脏病学 内科学
作者
Retesh Bajaj,Xingru Huang,Yakup Kilic,Anantharaman Ramasamy,Ajay Jain,Mick Ozkor,Vincenzo Tufaro,Hannah Safi,Emrah Erdoğan,Patrick W. Serruys,James Moon,Francesca Pugliese,Anthony Mathur,Ryo Torii,Andreas Baumbach,Jouke Dijkstra,Qianni Zhang,Christos V. Bourantas
出处
期刊:International Journal of Cardiology [Elsevier]
卷期号:339: 185-191 被引量:26
标识
DOI:10.1016/j.ijcard.2021.06.030
摘要

The aim of this study is to develop and validate a deep learning (DL) methodology capable of automated and accurate segmentation of intravascular ultrasound (IVUS) image sequences in real-time.IVUS segmentation was performed by two experts who manually annotated the external elastic membrane (EEM) and lumen borders in the end-diastolic frames of 197 IVUS sequences portraying the native coronary arteries of 65 patients. The IVUS sequences of 177 randomly-selected vessels were used to train and optimise a novel DL model for the segmentation of IVUS images. Validation of the developed methodology was performed in 20 vessels using the estimations of two expert analysts as the reference standard. The mean difference for the EEM, lumen and plaque area between the DL-methodology and the analysts was ≤0.23mm2 (standard deviation ≤0.85mm2), while the Hausdorff and mean distance differences for the EEM and lumen borders was ≤0.19 mm (standard deviation≤0.17 mm). The agreement between DL and experts was similar to experts' agreement (Williams Index ranges: 0.754-1.061) with similar results in frames portraying calcific plaques or side branches.The developed DL-methodology appears accurate and capable of segmenting high-resolution real-world IVUS datasets. These features are expected to facilitate its broad adoption and enhance the applications of IVUS in clinical practice and research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lujiajia发布了新的文献求助10
1秒前
4秒前
隐形曼青应助苏苏爱学习采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
5秒前
Owen应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
邓佳鑫Alan应助科研通管家采纳,获得10
5秒前
聪明蛋挞应助科研通管家采纳,获得30
5秒前
科研通AI6应助科研通管家采纳,获得30
5秒前
大个应助科研通管家采纳,获得10
5秒前
邓佳鑫Alan应助科研通管家采纳,获得10
5秒前
5秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
Zx_1993应助科研通管家采纳,获得20
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
邓佳鑫Alan应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
邓佳鑫Alan应助科研通管家采纳,获得10
6秒前
sevenhill应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
sevenhill应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
6秒前
7秒前
兴奋蜡烛完成签到,获得积分10
7秒前
8秒前
8秒前
lihaifeng发布了新的文献求助10
8秒前
8秒前
谦让小玉完成签到 ,获得积分10
9秒前
科研通AI6应助玉米排骨汤采纳,获得10
10秒前
观星发布了新的文献求助10
10秒前
月亮完成签到 ,获得积分10
10秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453630
求助须知:如何正确求助?哪些是违规求助? 4561192
关于积分的说明 14281077
捐赠科研通 4485153
什么是DOI,文献DOI怎么找? 2456502
邀请新用户注册赠送积分活动 1447252
关于科研通互助平台的介绍 1422669