Advanced deep learning methodology for accurate, real-time segmentation of high-resolution intravascular ultrasound images

血管内超声 分割 医学 人工智能 管腔(解剖学) 豪斯多夫距离 深度学习 冠状动脉 模式识别(心理学) 计算机科学 计算机视觉 放射科 动脉 心脏病学 内科学
作者
Retesh Bajaj,Xingru Huang,Yakup Kilic,Anantharaman Ramasamy,Ajay Jain,Mick Ozkor,Vincenzo Tufaro,Hannah Safi,Emrah Erdoğan,Patrick W. Serruys,James Moon,Francesca Pugliese,Anthony Mathur,Ryo Torii,Andreas Baumbach,Jouke Dijkstra,Qianni Zhang,Christos V. Bourantas
出处
期刊:International Journal of Cardiology [Elsevier]
卷期号:339: 185-191 被引量:19
标识
DOI:10.1016/j.ijcard.2021.06.030
摘要

The aim of this study is to develop and validate a deep learning (DL) methodology capable of automated and accurate segmentation of intravascular ultrasound (IVUS) image sequences in real-time.IVUS segmentation was performed by two experts who manually annotated the external elastic membrane (EEM) and lumen borders in the end-diastolic frames of 197 IVUS sequences portraying the native coronary arteries of 65 patients. The IVUS sequences of 177 randomly-selected vessels were used to train and optimise a novel DL model for the segmentation of IVUS images. Validation of the developed methodology was performed in 20 vessels using the estimations of two expert analysts as the reference standard. The mean difference for the EEM, lumen and plaque area between the DL-methodology and the analysts was ≤0.23mm2 (standard deviation ≤0.85mm2), while the Hausdorff and mean distance differences for the EEM and lumen borders was ≤0.19 mm (standard deviation≤0.17 mm). The agreement between DL and experts was similar to experts' agreement (Williams Index ranges: 0.754-1.061) with similar results in frames portraying calcific plaques or side branches.The developed DL-methodology appears accurate and capable of segmenting high-resolution real-world IVUS datasets. These features are expected to facilitate its broad adoption and enhance the applications of IVUS in clinical practice and research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oceanao应助研友_Z1WrgL采纳,获得10
1秒前
dhjskak发布了新的文献求助20
1秒前
研友_Zzrx6Z发布了新的文献求助10
1秒前
炙热胡萝卜完成签到 ,获得积分10
1秒前
1秒前
2秒前
杳鸢应助美嘉美采纳,获得80
2秒前
今后应助树欲静而风不止采纳,获得10
4秒前
ZXR完成签到,获得积分10
4秒前
4秒前
愉快的楷瑞完成签到,获得积分10
5秒前
科研通AI2S应助Connie采纳,获得30
5秒前
dannnnn完成签到,获得积分10
5秒前
5秒前
5秒前
席凡桃完成签到,获得积分10
7秒前
迷路尔曼完成签到,获得积分10
7秒前
成就乐珍完成签到 ,获得积分10
7秒前
溪溪完成签到,获得积分20
8秒前
光亮笑柳发布了新的文献求助10
9秒前
9秒前
欣喜的秋灵完成签到,获得积分10
10秒前
zzz完成签到,获得积分10
10秒前
Zhlili完成签到,获得积分10
10秒前
10秒前
打打应助renyun采纳,获得10
11秒前
慕青应助彭shuai采纳,获得10
11秒前
林快点发布了新的文献求助10
11秒前
慕青应助吴一一采纳,获得10
12秒前
13秒前
13秒前
白启完成签到,获得积分10
13秒前
13秒前
Jackie发布了新的文献求助10
14秒前
14秒前
14秒前
甜甜玫瑰应助原来采纳,获得10
16秒前
17秒前
xi发布了新的文献求助10
17秒前
May发布了新的文献求助10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156402
求助须知:如何正确求助?哪些是违规求助? 2807851
关于积分的说明 7874906
捐赠科研通 2466107
什么是DOI,文献DOI怎么找? 1312627
科研通“疑难数据库(出版商)”最低求助积分说明 630194
版权声明 601912