亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Advanced deep learning methodology for accurate, real-time segmentation of high-resolution intravascular ultrasound images

血管内超声 分割 医学 人工智能 管腔(解剖学) 豪斯多夫距离 深度学习 冠状动脉 模式识别(心理学) 计算机科学 计算机视觉 放射科 动脉 心脏病学 内科学
作者
Retesh Bajaj,Xingru Huang,Yakup Kilic,Anantharaman Ramasamy,Ajay Jain,Mick Ozkor,Vincenzo Tufaro,Hannah Safi,Emrah Erdoğan,Patrick W. Serruys,James Moon,Francesca Pugliese,Anthony Mathur,Ryo Torii,Andreas Baumbach,Jouke Dijkstra,Qianni Zhang,Christos V. Bourantas
出处
期刊:International Journal of Cardiology [Elsevier BV]
卷期号:339: 185-191 被引量:26
标识
DOI:10.1016/j.ijcard.2021.06.030
摘要

The aim of this study is to develop and validate a deep learning (DL) methodology capable of automated and accurate segmentation of intravascular ultrasound (IVUS) image sequences in real-time.IVUS segmentation was performed by two experts who manually annotated the external elastic membrane (EEM) and lumen borders in the end-diastolic frames of 197 IVUS sequences portraying the native coronary arteries of 65 patients. The IVUS sequences of 177 randomly-selected vessels were used to train and optimise a novel DL model for the segmentation of IVUS images. Validation of the developed methodology was performed in 20 vessels using the estimations of two expert analysts as the reference standard. The mean difference for the EEM, lumen and plaque area between the DL-methodology and the analysts was ≤0.23mm2 (standard deviation ≤0.85mm2), while the Hausdorff and mean distance differences for the EEM and lumen borders was ≤0.19 mm (standard deviation≤0.17 mm). The agreement between DL and experts was similar to experts' agreement (Williams Index ranges: 0.754-1.061) with similar results in frames portraying calcific plaques or side branches.The developed DL-methodology appears accurate and capable of segmenting high-resolution real-world IVUS datasets. These features are expected to facilitate its broad adoption and enhance the applications of IVUS in clinical practice and research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蛋白积聚完成签到,获得积分10
1秒前
风清扬应助mengmeng采纳,获得30
1秒前
4秒前
零_发布了新的文献求助10
4秒前
康康舞曲完成签到 ,获得积分10
6秒前
秋作完成签到,获得积分10
9秒前
9秒前
米其林发布了新的文献求助30
11秒前
13秒前
KON完成签到,获得积分10
15秒前
18秒前
黎明完成签到,获得积分10
22秒前
零_完成签到,获得积分10
23秒前
负责代珊完成签到,获得积分10
24秒前
SciGPT应助123采纳,获得10
24秒前
24秒前
黎明发布了新的文献求助10
26秒前
研友_VZG7GZ应助怦然心动采纳,获得10
27秒前
领导范儿应助王老裂采纳,获得80
28秒前
30秒前
brwen完成签到,获得积分10
33秒前
dax大雄完成签到 ,获得积分10
37秒前
40秒前
42秒前
43秒前
科研通AI6应助科研通管家采纳,获得10
44秒前
浮游应助科研通管家采纳,获得30
44秒前
共享精神应助科研通管家采纳,获得10
44秒前
田様应助科研通管家采纳,获得10
44秒前
ding应助科研通管家采纳,获得10
44秒前
浮游应助科研通管家采纳,获得10
44秒前
Hello应助科研通管家采纳,获得10
44秒前
ZZZ完成签到,获得积分10
47秒前
羊羊羊发布了新的文献求助10
47秒前
歪歪吸发布了新的文献求助10
47秒前
48秒前
xiaokun发布了新的文献求助10
48秒前
123发布了新的文献求助10
48秒前
王老裂发布了新的文献求助80
53秒前
歪歪吸完成签到,获得积分10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5185944
求助须知:如何正确求助?哪些是违规求助? 4371293
关于积分的说明 13612012
捐赠科研通 4223623
什么是DOI,文献DOI怎么找? 2316534
邀请新用户注册赠送积分活动 1315159
关于科研通互助平台的介绍 1264147