已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Advanced deep learning methodology for accurate, real-time segmentation of high-resolution intravascular ultrasound images

血管内超声 分割 医学 人工智能 管腔(解剖学) 豪斯多夫距离 深度学习 冠状动脉 模式识别(心理学) 计算机科学 计算机视觉 放射科 动脉 心脏病学 内科学
作者
Retesh Bajaj,Xingru Huang,Yakup Kilic,Anantharaman Ramasamy,Ajay Jain,Mick Ozkor,Vincenzo Tufaro,Hannah Safi,Emrah Erdoğan,Patrick W. Serruys,James Moon,Francesca Pugliese,Anthony Mathur,Ryo Torii,Andreas Baumbach,Jouke Dijkstra,Qianni Zhang,Christos V. Bourantas
出处
期刊:International Journal of Cardiology [Elsevier BV]
卷期号:339: 185-191 被引量:19
标识
DOI:10.1016/j.ijcard.2021.06.030
摘要

The aim of this study is to develop and validate a deep learning (DL) methodology capable of automated and accurate segmentation of intravascular ultrasound (IVUS) image sequences in real-time.IVUS segmentation was performed by two experts who manually annotated the external elastic membrane (EEM) and lumen borders in the end-diastolic frames of 197 IVUS sequences portraying the native coronary arteries of 65 patients. The IVUS sequences of 177 randomly-selected vessels were used to train and optimise a novel DL model for the segmentation of IVUS images. Validation of the developed methodology was performed in 20 vessels using the estimations of two expert analysts as the reference standard. The mean difference for the EEM, lumen and plaque area between the DL-methodology and the analysts was ≤0.23mm2 (standard deviation ≤0.85mm2), while the Hausdorff and mean distance differences for the EEM and lumen borders was ≤0.19 mm (standard deviation≤0.17 mm). The agreement between DL and experts was similar to experts' agreement (Williams Index ranges: 0.754-1.061) with similar results in frames portraying calcific plaques or side branches.The developed DL-methodology appears accurate and capable of segmenting high-resolution real-world IVUS datasets. These features are expected to facilitate its broad adoption and enhance the applications of IVUS in clinical practice and research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yydragen应助真实的依白采纳,获得30
1秒前
2秒前
林子楹发布了新的文献求助10
3秒前
4秒前
6秒前
CodeCraft应助伊力扎提采纳,获得10
7秒前
肖肖发布了新的文献求助10
8秒前
瘦瘦万怨完成签到,获得积分10
8秒前
完美世界应助Arvilzzz采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
韩凡发布了新的文献求助10
13秒前
肖肖完成签到,获得积分10
14秒前
16秒前
852应助是江江哥啊采纳,获得10
17秒前
陈同学完成签到 ,获得积分10
21秒前
伊力扎提发布了新的文献求助10
22秒前
科目三应助B站萧亚轩采纳,获得10
22秒前
华仔应助陈子旋采纳,获得10
24秒前
26秒前
逍遥猛禽完成签到,获得积分10
26秒前
季忆完成签到,获得积分10
27秒前
wendy_1006完成签到 ,获得积分10
29秒前
Grace完成签到,获得积分10
29秒前
Arvilzzz发布了新的文献求助10
29秒前
无花果应助壮观梦易采纳,获得10
30秒前
30秒前
qianmiao完成签到,获得积分10
31秒前
浩淼发布了新的文献求助10
33秒前
chen完成签到 ,获得积分10
34秒前
somin应助韩凡采纳,获得10
37秒前
pluto应助韩凡采纳,获得10
37秒前
39秒前
41秒前
41秒前
44秒前
Tang发布了新的文献求助10
44秒前
李健的小迷弟应助jisujun采纳,获得10
44秒前
张小龙发布了新的文献求助10
45秒前
46秒前
46秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959865
求助须知:如何正确求助?哪些是违规求助? 3506102
关于积分的说明 11127857
捐赠科研通 3238043
什么是DOI,文献DOI怎么找? 1789463
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021