Temporal associations among loneliness, anxiety, and depression during the COVID‐19 pandemic period

孤独 焦虑 心理学 萧条(经济学) 临床心理学 2019年冠状病毒病(COVID-19) 精神科 医学 疾病 内科学 宏观经济学 经济 传染病(医学专业)
作者
Jianfen Wu,Yunpeng Wu,Yu Tian
出处
期刊:Stress and Health [Wiley]
卷期号:38 (1): 90-101 被引量:27
标识
DOI:10.1002/smi.3076
摘要

Numerous studies have reported that individuals' loneliness, anxiety, and depression levels increased during the COVID-19 pandemic period. However, reciprocal associations among loneliness, anxiety, and depression, as well as gender differences in these associations, have not been investigated. Therefore, temporal associations among loneliness, anxiety, and depression and gender differences in these associations were examined in a longitudinal study during the COVID-19 pandemic period. The loneliness, anxiety, and depression levels of 458 university students were evaluated at three timepoints (T1, T2, and T3) during the COVID-19 pandemic period in China. The timepoints were separated by 1 month. Cross-lagged panel designs were used to examine reciprocal associations among loneliness, anxiety, and depression as well as the stability and gender differences of these associations. Cross-lagged panel analysis revealed that T1 depression positively predicted T2 anxiety and loneliness, T1 loneliness positively predicted T2 depression, T2 anxiety positively predicted T3 depression, T2 depression positively predicted T3 anxiety and loneliness, T2 loneliness positively predicted T3 depression, and T1 loneliness positively predicted T3 anxiety through the mediating role of T2 depression. No gender differences were observed in the cross-lagged associations. During the COVID-19 pandemic period, loneliness and depression predicted each other across time, and loneliness predicted anxiety across time, mediated by depression. No gender differences were observed in the cross-lagged associations among loneliness, anxiety, and depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
于生有你完成签到,获得积分10
刚刚
Ava应助Suyi采纳,获得10
刚刚
李健的小迷弟应助lin采纳,获得10
刚刚
所所应助山谷与花采纳,获得10
刚刚
1秒前
vivi发布了新的文献求助10
2秒前
2秒前
彩色梦菡完成签到,获得积分10
2秒前
初滞发布了新的文献求助10
2秒前
彭于晏应助不知道在干嘛采纳,获得10
2秒前
无奈青旋完成签到 ,获得积分20
3秒前
丘比特应助杜丽芳采纳,获得10
3秒前
HMMXC发布了新的文献求助10
3秒前
4秒前
4秒前
善学以致用应助百鳴采纳,获得10
4秒前
wwx发布了新的文献求助10
4秒前
Orange应助杨旭采纳,获得10
5秒前
常云鹏完成签到 ,获得积分10
5秒前
打打应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
6秒前
Hello应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
852应助舒克采纳,获得10
7秒前
7秒前
7秒前
PKU_夏日晴发布了新的文献求助50
7秒前
程希发布了新的文献求助10
7秒前
song完成签到,获得积分10
7秒前
vv发布了新的文献求助30
7秒前
8秒前
蓝风铃发布了新的文献求助10
8秒前
杏林发布了新的文献求助10
8秒前
8秒前
8秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388652
求助须知:如何正确求助?哪些是违规求助? 4510971
关于积分的说明 14037083
捐赠科研通 4421705
什么是DOI,文献DOI怎么找? 2428895
邀请新用户注册赠送积分活动 1421453
关于科研通互助平台的介绍 1400650