Machine learning accelerates quantum mechanics predictions of molecular crystals

物理 Atom(片上系统) 领域(数学) 片段(逻辑) 分子 晶体结构预测 工作(物理) QM/毫米 统计物理学 量子力学 算法 计算机科学 数学 纯数学 嵌入式系统
作者
Yanqiang Han,Imran Ali,Zhilong Wang,Junfei Cai,Sicheng Wu,Jiequn Tang,Lin Zhang,Jiahao Ren,M. Xiao,Qianqian Lu,Lei Hang,Hongyuan Luo,Jinjin Li
出处
期刊:Physics Reports [Elsevier]
卷期号:934: 1-71 被引量:34
标识
DOI:10.1016/j.physrep.2021.08.002
摘要

Quantum mechanics (QM) approaches (DFT, MP2, CCSD(T), etc.) play an important role in calculating molecules and crystals with a high accuracy and acceptable efficiency. In recent years, with the development of artificial intelligence technology, machine learning (ML) has played an increasingly essential role in accelerating the QM calculations and predictions of molecular crystals, as well as the discovery of novel materials. This review provides state-of-the-art information and prospects for QM theories, fragment-based methods and ML methods, as well as their up-to-date applications in predicting small inorganic molecules, large drug molecules and relevant molecular crystals. The discussed applications include ML potential energy surface (PES) construction, crystal structure prediction (CSP), chemical reaction prediction and predictions of a series of properties, such as structure, energy, atomic force, bond length, chemical shift, superconductivity, super-hardness, vibrational spectra, phase transition and diagram. This work also reviews software and packages built recently based on ML methods for property predictions and PES constructions in the field of physics and chemistry. For the three discussed methods, the most time-consuming one is the high-level all-atom QM method, which is capable of describing electronic structures with high accuracy and thus predicts properties that are consistent with the experimental results. The second one, fragment-based QM method, requires less computational time than all-atom QM, which can accelerate all-atom QM calculations for large systems by dividing the entire system into subsystems, presenting a considerable efficiency increase. The computational complexities for fragment-based QM and all-atom QM are N - N2 and N5-N7 (N is the size of the system), respectively. A well-trained ML model can make the above predictions within seconds while ensuring a high prediction accuracy, where its prediction cost and accuracy are determined by the training data and the training process. Therefore, it is challenging for ML applications in physics and chemistry to generate highly accurate and powerful ML models while ensuring sufficient datasets. This work not only provides an overview of the recent progress in QM theories, fragment-based methods, ML methods and several ML-based software programs and applications on small inorganic molecules, large drug molecules and relevant crystals, but also shed light on ML methods in accelerating QM prediction, optimization and novel crystal material design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
今后应助魏聪采纳,获得10
1秒前
1秒前
popkeke发布了新的文献求助10
1秒前
缥缈千兰发布了新的文献求助10
1秒前
2秒前
Hello应助妮妮采纳,获得10
2秒前
hhh完成签到,获得积分20
2秒前
郭璠完成签到,获得积分10
3秒前
Zion完成签到,获得积分0
3秒前
Zx_1993应助期刊采纳,获得20
3秒前
安乐发布了新的文献求助10
3秒前
闪闪航空完成签到,获得积分20
3秒前
4秒前
酷炫的富完成签到,获得积分10
4秒前
激情的羊青发布了新的文献求助100
4秒前
4秒前
4秒前
w_tiger发布了新的文献求助10
5秒前
哎哟很烦发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
Lucas应助111采纳,获得10
6秒前
枫叶发布了新的文献求助10
7秒前
yyd发布了新的文献求助10
7秒前
搜集达人应助Nxx采纳,获得10
7秒前
JINJIN完成签到,获得积分10
7秒前
共享精神应助嘉佳伽采纳,获得10
8秒前
123发布了新的文献求助10
8秒前
popkeke完成签到,获得积分10
8秒前
skbkbe完成签到 ,获得积分10
8秒前
苑小花完成签到 ,获得积分10
9秒前
俺要发CNS发布了新的文献求助10
10秒前
JTHan发布了新的文献求助10
10秒前
拉布拉卡给拉布拉卡的求助进行了留言
10秒前
10秒前
秋星人发布了新的文献求助10
10秒前
樊远红发布了新的文献求助10
10秒前
韩笑发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512879
求助须知:如何正确求助?哪些是违规求助? 4607280
关于积分的说明 14504084
捐赠科研通 4542710
什么是DOI,文献DOI怎么找? 2489172
邀请新用户注册赠送积分活动 1471230
关于科研通互助平台的介绍 1443251