Machine learning accelerates quantum mechanics predictions of molecular crystals

物理 Atom(片上系统) 领域(数学) 片段(逻辑) 分子 晶体结构预测 工作(物理) QM/毫米 统计物理学 量子力学 理论物理学 算法 计算机科学 数学 嵌入式系统 纯数学
作者
Yanqiang Han,Imran Ali,Zhilong Wang,Junfei Cai,Sicheng Wu,Jiequn Tang,Lin Zhang,Jiahao Ren,M. Xiao,Qianqian Lu,Lei Hang,Hongyuan Luo,Jinjin Li
出处
期刊:Physics Reports [Elsevier]
卷期号:934: 1-71 被引量:29
标识
DOI:10.1016/j.physrep.2021.08.002
摘要

Quantum mechanics (QM) approaches (DFT, MP2, CCSD(T), etc.) play an important role in calculating molecules and crystals with a high accuracy and acceptable efficiency. In recent years, with the development of artificial intelligence technology, machine learning (ML) has played an increasingly essential role in accelerating the QM calculations and predictions of molecular crystals, as well as the discovery of novel materials. This review provides state-of-the-art information and prospects for QM theories, fragment-based methods and ML methods, as well as their up-to-date applications in predicting small inorganic molecules, large drug molecules and relevant molecular crystals. The discussed applications include ML potential energy surface (PES) construction, crystal structure prediction (CSP), chemical reaction prediction and predictions of a series of properties, such as structure, energy, atomic force, bond length, chemical shift, superconductivity, super-hardness, vibrational spectra, phase transition and diagram. This work also reviews software and packages built recently based on ML methods for property predictions and PES constructions in the field of physics and chemistry. For the three discussed methods, the most time-consuming one is the high-level all-atom QM method, which is capable of describing electronic structures with high accuracy and thus predicts properties that are consistent with the experimental results. The second one, fragment-based QM method, requires less computational time than all-atom QM, which can accelerate all-atom QM calculations for large systems by dividing the entire system into subsystems, presenting a considerable efficiency increase. The computational complexities for fragment-based QM and all-atom QM are N - N2 and N5-N7 (N is the size of the system), respectively. A well-trained ML model can make the above predictions within seconds while ensuring a high prediction accuracy, where its prediction cost and accuracy are determined by the training data and the training process. Therefore, it is challenging for ML applications in physics and chemistry to generate highly accurate and powerful ML models while ensuring sufficient datasets. This work not only provides an overview of the recent progress in QM theories, fragment-based methods, ML methods and several ML-based software programs and applications on small inorganic molecules, large drug molecules and relevant crystals, but also shed light on ML methods in accelerating QM prediction, optimization and novel crystal material design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
受伤的薯片完成签到 ,获得积分10
1秒前
每天都很忙完成签到 ,获得积分10
1秒前
xxxx完成签到 ,获得积分10
1秒前
2秒前
太阳完成签到 ,获得积分10
3秒前
南城雨落完成签到,获得积分10
3秒前
monster完成签到 ,获得积分10
6秒前
会思考的狐狸完成签到 ,获得积分10
9秒前
活泼的似狮完成签到,获得积分10
11秒前
Nicole完成签到 ,获得积分10
13秒前
jeffrey完成签到,获得积分10
13秒前
传奇3应助daheeeee采纳,获得10
16秒前
Joy完成签到,获得积分10
16秒前
赛赛完成签到,获得积分10
19秒前
ww完成签到,获得积分10
19秒前
今后应助哦哦哦哦哦采纳,获得10
20秒前
席江海完成签到,获得积分10
20秒前
you完成签到,获得积分10
21秒前
HCKACECE完成签到 ,获得积分10
23秒前
LinYX完成签到,获得积分10
25秒前
微生完成签到 ,获得积分10
26秒前
LLL完成签到,获得积分10
27秒前
雪山飞龙完成签到,获得积分10
28秒前
加贝完成签到 ,获得积分10
28秒前
世佳何完成签到,获得积分10
29秒前
36秒前
居里姐姐完成签到 ,获得积分10
36秒前
刘刘完成签到,获得积分10
38秒前
Eliii完成签到 ,获得积分10
40秒前
ccl完成签到,获得积分10
43秒前
43秒前
xiaofenzi完成签到,获得积分10
45秒前
七月星河完成签到 ,获得积分10
46秒前
Radish完成签到 ,获得积分10
47秒前
aaaaaa完成签到,获得积分10
50秒前
天下一番完成签到,获得积分10
53秒前
我的白起是国服完成签到 ,获得积分10
55秒前
LEE123完成签到,获得积分10
57秒前
奶俊啵啵完成签到 ,获得积分10
59秒前
啊唔完成签到 ,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134035
求助须知:如何正确求助?哪些是违规求助? 2784851
关于积分的说明 7768939
捐赠科研通 2440310
什么是DOI,文献DOI怎么找? 1297361
科研通“疑难数据库(出版商)”最低求助积分说明 624945
版权声明 600792