Machine learning accelerates quantum mechanics predictions of molecular crystals

物理 Atom(片上系统) 领域(数学) 片段(逻辑) 分子 晶体结构预测 工作(物理) QM/毫米 统计物理学 量子力学 算法 计算机科学 数学 嵌入式系统 纯数学
作者
Yanqiang Han,Imran Ali,Zhilong Wang,Junfei Cai,Sicheng Wu,Jiequn Tang,Lin Zhang,Jiahao Ren,M. Xiao,Qianqian Lu,Lei Hang,Hongyuan Luo,Jinjin Li
出处
期刊:Physics Reports [Elsevier]
卷期号:934: 1-71 被引量:31
标识
DOI:10.1016/j.physrep.2021.08.002
摘要

Quantum mechanics (QM) approaches (DFT, MP2, CCSD(T), etc.) play an important role in calculating molecules and crystals with a high accuracy and acceptable efficiency. In recent years, with the development of artificial intelligence technology, machine learning (ML) has played an increasingly essential role in accelerating the QM calculations and predictions of molecular crystals, as well as the discovery of novel materials. This review provides state-of-the-art information and prospects for QM theories, fragment-based methods and ML methods, as well as their up-to-date applications in predicting small inorganic molecules, large drug molecules and relevant molecular crystals. The discussed applications include ML potential energy surface (PES) construction, crystal structure prediction (CSP), chemical reaction prediction and predictions of a series of properties, such as structure, energy, atomic force, bond length, chemical shift, superconductivity, super-hardness, vibrational spectra, phase transition and diagram. This work also reviews software and packages built recently based on ML methods for property predictions and PES constructions in the field of physics and chemistry. For the three discussed methods, the most time-consuming one is the high-level all-atom QM method, which is capable of describing electronic structures with high accuracy and thus predicts properties that are consistent with the experimental results. The second one, fragment-based QM method, requires less computational time than all-atom QM, which can accelerate all-atom QM calculations for large systems by dividing the entire system into subsystems, presenting a considerable efficiency increase. The computational complexities for fragment-based QM and all-atom QM are N - N2 and N5-N7 (N is the size of the system), respectively. A well-trained ML model can make the above predictions within seconds while ensuring a high prediction accuracy, where its prediction cost and accuracy are determined by the training data and the training process. Therefore, it is challenging for ML applications in physics and chemistry to generate highly accurate and powerful ML models while ensuring sufficient datasets. This work not only provides an overview of the recent progress in QM theories, fragment-based methods, ML methods and several ML-based software programs and applications on small inorganic molecules, large drug molecules and relevant crystals, but also shed light on ML methods in accelerating QM prediction, optimization and novel crystal material design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kevin完成签到,获得积分10
2秒前
酷炫的尔丝完成签到 ,获得积分10
2秒前
Hello应助标致的蛋挞采纳,获得50
3秒前
大个应助明亮的宁采纳,获得10
4秒前
Rainbow发布了新的文献求助10
4秒前
anyone发布了新的文献求助30
5秒前
充电宝应助SY采纳,获得10
6秒前
D先生完成签到,获得积分20
6秒前
yxt完成签到,获得积分10
6秒前
momo发布了新的文献求助10
7秒前
9秒前
苏照杭应助长度2到采纳,获得10
9秒前
10秒前
次我完成签到,获得积分10
10秒前
qisili关注了科研通微信公众号
11秒前
Owen应助李大爷采纳,获得10
12秒前
13秒前
脑洞疼应助迅速冰岚采纳,获得10
15秒前
NexusExplorer应助whoops采纳,获得10
15秒前
sweetbearm应助通~采纳,获得10
15秒前
VDC应助欢呼冰岚采纳,获得30
15秒前
Grayball应助hhl采纳,获得10
15秒前
充电宝应助次我采纳,获得10
16秒前
sgjj33发布了新的文献求助10
17秒前
墨墨完成签到,获得积分10
18秒前
蒸馏水完成签到,获得积分10
18秒前
123完成签到,获得积分10
18秒前
李大爷完成签到,获得积分10
19秒前
SY发布了新的文献求助10
19秒前
journey完成签到 ,获得积分10
23秒前
kaw发布了新的文献求助10
23秒前
彭于晏应助hdd采纳,获得10
26秒前
感性的寄真完成签到 ,获得积分10
26秒前
kaw完成签到,获得积分10
27秒前
anyone完成签到,获得积分10
28秒前
cyt9999完成签到,获得积分10
31秒前
32秒前
32秒前
33秒前
科研通AI5应助楼剑愁采纳,获得10
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851