Machine learning accelerates quantum mechanics predictions of molecular crystals

物理 Atom(片上系统) 领域(数学) 片段(逻辑) 分子 晶体结构预测 工作(物理) QM/毫米 统计物理学 量子力学 算法 计算机科学 数学 纯数学 嵌入式系统
作者
Yanqiang Han,Imran Ali,Zhilong Wang,Junfei Cai,Sicheng Wu,Jiequn Tang,Lin Zhang,Jiahao Ren,M. Xiao,Qianqian Lu,Lei Hang,Hongyuan Luo,Jinjin Li
出处
期刊:Physics Reports [Elsevier BV]
卷期号:934: 1-71 被引量:34
标识
DOI:10.1016/j.physrep.2021.08.002
摘要

Quantum mechanics (QM) approaches (DFT, MP2, CCSD(T), etc.) play an important role in calculating molecules and crystals with a high accuracy and acceptable efficiency. In recent years, with the development of artificial intelligence technology, machine learning (ML) has played an increasingly essential role in accelerating the QM calculations and predictions of molecular crystals, as well as the discovery of novel materials. This review provides state-of-the-art information and prospects for QM theories, fragment-based methods and ML methods, as well as their up-to-date applications in predicting small inorganic molecules, large drug molecules and relevant molecular crystals. The discussed applications include ML potential energy surface (PES) construction, crystal structure prediction (CSP), chemical reaction prediction and predictions of a series of properties, such as structure, energy, atomic force, bond length, chemical shift, superconductivity, super-hardness, vibrational spectra, phase transition and diagram. This work also reviews software and packages built recently based on ML methods for property predictions and PES constructions in the field of physics and chemistry. For the three discussed methods, the most time-consuming one is the high-level all-atom QM method, which is capable of describing electronic structures with high accuracy and thus predicts properties that are consistent with the experimental results. The second one, fragment-based QM method, requires less computational time than all-atom QM, which can accelerate all-atom QM calculations for large systems by dividing the entire system into subsystems, presenting a considerable efficiency increase. The computational complexities for fragment-based QM and all-atom QM are N - N2 and N5-N7 (N is the size of the system), respectively. A well-trained ML model can make the above predictions within seconds while ensuring a high prediction accuracy, where its prediction cost and accuracy are determined by the training data and the training process. Therefore, it is challenging for ML applications in physics and chemistry to generate highly accurate and powerful ML models while ensuring sufficient datasets. This work not only provides an overview of the recent progress in QM theories, fragment-based methods, ML methods and several ML-based software programs and applications on small inorganic molecules, large drug molecules and relevant crystals, but also shed light on ML methods in accelerating QM prediction, optimization and novel crystal material design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
zyb完成签到 ,获得积分10
8秒前
12秒前
Lrcx完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
17秒前
天雨路完成签到,获得积分10
17秒前
光亮若翠完成签到,获得积分10
18秒前
脆啵啵马克宝完成签到 ,获得积分10
19秒前
22秒前
美满的皮卡丘完成签到 ,获得积分10
23秒前
喜悦向日葵完成签到 ,获得积分10
26秒前
科研通AI5应助siv采纳,获得10
26秒前
耍酷鼠标完成签到 ,获得积分0
31秒前
31秒前
Virtual应助呆萌的机器猫采纳,获得20
36秒前
量子星尘发布了新的文献求助10
36秒前
jintian完成签到 ,获得积分10
36秒前
37秒前
现代的紫霜完成签到,获得积分10
44秒前
量子星尘发布了新的文献求助10
47秒前
黑眼圈完成签到 ,获得积分10
49秒前
温暖眼神完成签到,获得积分10
51秒前
量子星尘发布了新的文献求助10
55秒前
李审绥完成签到 ,获得积分10
59秒前
siv发布了新的文献求助10
1分钟前
小屁孩完成签到,获得积分0
1分钟前
1分钟前
xsss完成签到 ,获得积分10
1分钟前
许晴完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
温馨完成签到 ,获得积分10
1分钟前
云淡风清完成签到 ,获得积分10
1分钟前
whuhustwit完成签到,获得积分10
1分钟前
1分钟前
阿尼完成签到 ,获得积分10
1分钟前
weigaozhao完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
大侠完成签到 ,获得积分10
1分钟前
忧伤的慕梅完成签到 ,获得积分10
1分钟前
房LY完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4597369
求助须知:如何正确求助?哪些是违规求助? 4008966
关于积分的说明 12409738
捐赠科研通 3688190
什么是DOI,文献DOI怎么找? 2032981
邀请新用户注册赠送积分活动 1066226
科研通“疑难数据库(出版商)”最低求助积分说明 951506