Machine learning accelerates quantum mechanics predictions of molecular crystals

物理 Atom(片上系统) 领域(数学) 片段(逻辑) 分子 晶体结构预测 工作(物理) QM/毫米 统计物理学 量子力学 算法 计算机科学 数学 嵌入式系统 纯数学
作者
Yanqiang Han,Imran Ali,Zhilong Wang,Junfei Cai,Sicheng Wu,Jiequn Tang,Lin Zhang,Jiahao Ren,M. Xiao,Qianqian Lu,Lei Hang,Hongyuan Luo,Jinjin Li
出处
期刊:Physics Reports [Elsevier BV]
卷期号:934: 1-71 被引量:34
标识
DOI:10.1016/j.physrep.2021.08.002
摘要

Quantum mechanics (QM) approaches (DFT, MP2, CCSD(T), etc.) play an important role in calculating molecules and crystals with a high accuracy and acceptable efficiency. In recent years, with the development of artificial intelligence technology, machine learning (ML) has played an increasingly essential role in accelerating the QM calculations and predictions of molecular crystals, as well as the discovery of novel materials. This review provides state-of-the-art information and prospects for QM theories, fragment-based methods and ML methods, as well as their up-to-date applications in predicting small inorganic molecules, large drug molecules and relevant molecular crystals. The discussed applications include ML potential energy surface (PES) construction, crystal structure prediction (CSP), chemical reaction prediction and predictions of a series of properties, such as structure, energy, atomic force, bond length, chemical shift, superconductivity, super-hardness, vibrational spectra, phase transition and diagram. This work also reviews software and packages built recently based on ML methods for property predictions and PES constructions in the field of physics and chemistry. For the three discussed methods, the most time-consuming one is the high-level all-atom QM method, which is capable of describing electronic structures with high accuracy and thus predicts properties that are consistent with the experimental results. The second one, fragment-based QM method, requires less computational time than all-atom QM, which can accelerate all-atom QM calculations for large systems by dividing the entire system into subsystems, presenting a considerable efficiency increase. The computational complexities for fragment-based QM and all-atom QM are N - N2 and N5-N7 (N is the size of the system), respectively. A well-trained ML model can make the above predictions within seconds while ensuring a high prediction accuracy, where its prediction cost and accuracy are determined by the training data and the training process. Therefore, it is challenging for ML applications in physics and chemistry to generate highly accurate and powerful ML models while ensuring sufficient datasets. This work not only provides an overview of the recent progress in QM theories, fragment-based methods, ML methods and several ML-based software programs and applications on small inorganic molecules, large drug molecules and relevant crystals, but also shed light on ML methods in accelerating QM prediction, optimization and novel crystal material design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助Nozomi采纳,获得10
刚刚
小马甲应助YJ888采纳,获得10
刚刚
香蕉觅云应助jialiu采纳,获得10
刚刚
cosmos完成签到,获得积分10
1秒前
大个应助独特乘云采纳,获得10
2秒前
2秒前
小晓发布了新的文献求助10
2秒前
wonder123发布了新的文献求助10
4秒前
老实起哞完成签到,获得积分10
4秒前
6秒前
7秒前
gsj发布了新的文献求助10
8秒前
9秒前
所所应助wonder123采纳,获得10
9秒前
10秒前
10秒前
10秒前
田様应助忆茶戏采纳,获得10
10秒前
wss完成签到,获得积分10
11秒前
11秒前
11秒前
song_song发布了新的文献求助10
12秒前
桐桐应助贪玩的野狍子采纳,获得50
12秒前
路小黑发布了新的文献求助10
13秒前
wss发布了新的文献求助10
13秒前
UsihaGuwalgiya完成签到,获得积分10
14秒前
14秒前
15秒前
独特乘云发布了新的文献求助10
15秒前
16秒前
yyyyxxxg完成签到,获得积分10
17秒前
18秒前
健壮的花生zzz完成签到,获得积分10
19秒前
19秒前
Michael-布莱恩特完成签到,获得积分10
20秒前
323431完成签到,获得积分10
21秒前
烟花应助郭小宝采纳,获得10
21秒前
lzx发布了新的文献求助10
22秒前
LJF完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174