聚乙烯醇
吸附
粉煤灰
壳聚糖
乙烯醇
Box-Behnken设计
弗伦德利希方程
甲基橙
化学工程
核化学
化学
材料科学
响应面法
色谱法
聚合物
有机化学
催化作用
工程类
光催化
作者
Nurul Najwa Abd Malek,Ali H. Jawad,Khudzir Ismail,Raja Razuan Raja Deris,Zeid A. ALOthman
标识
DOI:10.1016/j.ijbiomac.2021.08.160
摘要
A magnetic biocomposite blend of chitosan-polyvinyl alcohol/fly ash (m-Cs-PVA/FA) was developed by adding fly ash (FA) microparticles into the polymeric matrix of magnetic chitosan-polyvinyl alcohol (m-Cs-PVA). The effectiveness of m-Cs-PVA/FA as an adsorbent to remove textile dye (reactive orange 16, RO16) from aquatic environment was evaluated. The optimum adsorption key parameters and their significant interactions were determined by Box-Behnken Design (BBD). The analysis of variance (ANOVA) indicates the significant interactions can be observed between m-Cs-PVA/FA dose with solution pH, and m-Cs-PVA/FA dose with working temperature. Considering these significant interactions, the highest removal of RO16 (%) was found 90.3% at m-Cs-PVA/FA dose (0.06 g), solution pH (4), working temperature (30 °C), and contact time (17.5 min). The results of adsorption kinetics revealed that the RO16 adsorption was better described by the pseudo-second-order model. The results of adsorption isotherm indicated a multilayer adsorption process as well described by Freundlich model with maximum adsorption capacity of 123.8 mg/g at 30 °C. An external magnetic field can be easily applied to recover the adsorbent (m-Cs-PVA/FA). The results supported that the synthesized m-Cs-PVA/FA presents itself as an effective and promising adsorbent for textile dye with preferable adsorption capacity and separation ability during and after the adsorption process.
科研通智能强力驱动
Strongly Powered by AbleSci AI