亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DLOAM: Real-time and Robust LiDAR SLAM System Based on CNN in Dynamic Urban Environments

计算机科学 稳健性(进化) 里程计 激光雷达 人工智能 机器人 点云 计算机视觉 特征(语言学) 同时定位和映射 移动机器人 遥感 地理 生物化学 化学 语言学 哲学 基因
作者
Wenbo Liu,Wei Sun,Yi Liu
出处
期刊:IEEE open journal of intelligent transportation systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:19
标识
DOI:10.1109/ojits.2021.3109423
摘要

Dynamic object detection, state estimation, and map-building are crucial for autonomous robot systems and intelligent transportation applications in urban scenarios. Most current LiDAR Simultaneous Localization and Mapping (SLAM) systems operate on the assumption that the observed environment is static. However, the overall accuracy and robustness of a SLAM system can be compromised by dynamic objects in the environment. Aiming at the problem of inaccurate odometry estimation and wrong mapping caused by the existing LiDAR SLAM method which cannot detect the dynamic objects, we study the SLAM problem of robots and unmanned vehicles equipped with LiDAR traveling in the dynamic urban scenes. We propose a fast LiDAR-only model-free dynamic objects detection method, which uses the spatial and temporal information of point cloud through a convolutional neural network (CNN), and the detection accuracy is improved by 35 use spatial information. We further integrate it into a state-of-the-art LiDAR SLAM framework to improve the SLAM performance. Firstly, the range image constructed by LiDAR point cloud is used for ground extraction and non-ground point clustering. Then, the motion of objects in the scene is estimated by the difference between adjacent frames, and the segmented objects are further divided into dynamic objects and static objects by their motion features. After that, the stable feature points are extracted from the static objects. Finally, the pose transformation of adjacent frames is solved by matching feature point pairs. We evaluated the accuracy and robustness of our system on datasets with different challenging dynamic environments, and the results show our system has significant improvements in accuracy and robustness of odometry and mapping, while still maintain real-time performance, which is sufficient for autonomous robot systems and intelligent transportation applications in urban scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
眉间尺发布了新的文献求助10
10秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
gexzygg应助科研通管家采纳,获得10
29秒前
gexzygg应助科研通管家采纳,获得10
29秒前
gexzygg应助科研通管家采纳,获得10
29秒前
shhoing应助科研通管家采纳,获得10
29秒前
gexzygg应助科研通管家采纳,获得10
29秒前
gexzygg应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得30
29秒前
jason完成签到 ,获得积分10
41秒前
StonesKing发布了新的文献求助10
45秒前
melo完成签到,获得积分10
52秒前
科研通AI6应助达不溜搽采纳,获得10
59秒前
华仔应助StonesKing采纳,获得10
1分钟前
MrTStar完成签到 ,获得积分10
1分钟前
莫力布林完成签到 ,获得积分10
1分钟前
1分钟前
StonesKing完成签到,获得积分20
1分钟前
2分钟前
StonesKing发布了新的文献求助10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
木昆完成签到 ,获得积分10
3分钟前
3分钟前
萨尔莫斯完成签到,获得积分10
3分钟前
4分钟前
达不溜搽发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
4分钟前
调皮千兰发布了新的文献求助10
4分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561466
求助须知:如何正确求助?哪些是违规求助? 4646576
关于积分的说明 14678674
捐赠科研通 4587855
什么是DOI,文献DOI怎么找? 2517242
邀请新用户注册赠送积分活动 1490539
关于科研通互助平台的介绍 1461500