已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DLOAM: Real-time and Robust LiDAR SLAM System Based on CNN in Dynamic Urban Environments

计算机科学 稳健性(进化) 里程计 激光雷达 人工智能 机器人 点云 计算机视觉 特征(语言学) 同时定位和映射 移动机器人 遥感 地理 生物化学 化学 语言学 哲学 基因
作者
Wenbo Liu,Wei Sun,Yi Liu
出处
期刊:IEEE open journal of intelligent transportation systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:11
标识
DOI:10.1109/ojits.2021.3109423
摘要

Dynamic object detection, state estimation, and map-building are crucial for autonomous robot systems and intelligent transportation applications in urban scenarios. Most current LiDAR Simultaneous Localization and Mapping (SLAM) systems operate on the assumption that the observed environment is static. However, the overall accuracy and robustness of a SLAM system can be compromised by dynamic objects in the environment. Aiming at the problem of inaccurate odometry estimation and wrong mapping caused by the existing LiDAR SLAM method which cannot detect the dynamic objects, we study the SLAM problem of robots and unmanned vehicles equipped with LiDAR traveling in the dynamic urban scenes. We propose a fast LiDAR-only model-free dynamic objects detection method, which uses the spatial and temporal information of point cloud through a convolutional neural network (CNN), and the detection accuracy is improved by 35 use spatial information. We further integrate it into a state-of-the-art LiDAR SLAM framework to improve the SLAM performance. Firstly, the range image constructed by LiDAR point cloud is used for ground extraction and non-ground point clustering. Then, the motion of objects in the scene is estimated by the difference between adjacent frames, and the segmented objects are further divided into dynamic objects and static objects by their motion features. After that, the stable feature points are extracted from the static objects. Finally, the pose transformation of adjacent frames is solved by matching feature point pairs. We evaluated the accuracy and robustness of our system on datasets with different challenging dynamic environments, and the results show our system has significant improvements in accuracy and robustness of odometry and mapping, while still maintain real-time performance, which is sufficient for autonomous robot systems and intelligent transportation applications in urban scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助LINDY采纳,获得30
刚刚
Sensons完成签到,获得积分10
刚刚
LLX发布了新的文献求助10
1秒前
llnysl完成签到 ,获得积分10
2秒前
给好评发布了新的文献求助20
3秒前
Dyying发布了新的文献求助50
4秒前
6秒前
西瓜完成签到 ,获得积分10
6秒前
无私的含海完成签到,获得积分10
7秒前
9秒前
天天快乐应助威武的凡双采纳,获得10
10秒前
12秒前
博修发布了新的文献求助10
13秒前
蜀黍完成签到 ,获得积分10
13秒前
六初完成签到 ,获得积分10
13秒前
导师老八发布了新的文献求助10
13秒前
火星上紫山完成签到 ,获得积分10
14秒前
15秒前
ak发布了新的文献求助10
16秒前
17秒前
墨尘发布了新的文献求助30
18秒前
hwen1998完成签到 ,获得积分10
20秒前
华仔应助动生电动势采纳,获得30
21秒前
hanzhua132发布了新的文献求助10
22秒前
23秒前
66289完成签到 ,获得积分10
23秒前
27秒前
宝玉发布了新的文献求助10
28秒前
ning发布了新的文献求助10
34秒前
taozi完成签到,获得积分20
34秒前
36秒前
Zhengzhang完成签到 ,获得积分10
38秒前
顾矜应助科研通管家采纳,获得10
39秒前
英姑应助科研通管家采纳,获得10
40秒前
40秒前
华仔应助科研通管家采纳,获得10
40秒前
yx_cheng应助科研通管家采纳,获得10
40秒前
搜集达人应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
脑洞疼应助科研通管家采纳,获得10
40秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963003
求助须知:如何正确求助?哪些是违规求助? 3508926
关于积分的说明 11144142
捐赠科研通 3241877
什么是DOI,文献DOI怎么找? 1791703
邀请新用户注册赠送积分活动 873095
科研通“疑难数据库(出版商)”最低求助积分说明 803603