DLOAM: Real-time and Robust LiDAR SLAM System Based on CNN in Dynamic Urban Environments

计算机科学 稳健性(进化) 里程计 激光雷达 人工智能 机器人 点云 计算机视觉 同时定位和映射
作者
Wenbo Liu,Wei Sun,Yi Liu
出处
期刊:IEEE open journal of intelligent transportation systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/ojits.2021.3109423
摘要

Dynamic object detection, state estimation, and map-building are crucial for autonomous robot systems and intelligent transportation applications in urban scenarios. Most current LiDAR Simultaneous Localization and Mapping (SLAM) systems operate on the assumption that the observed environment is static. However, the overall accuracy and robustness of a SLAM system can be compromised by dynamic objects in the environment. Aiming at the problem of inaccurate odometry estimation and wrong mapping caused by the existing LiDAR SLAM method which cannot detect the dynamic objects, we study the SLAM problem of robots and unmanned vehicles equipped with LiDAR traveling in the dynamic urban scenes. We propose a fast LiDAR-only model-free dynamic objects detection method, which uses the spatial and temporal information of point cloud through a convolutional neural network (CNN), and the detection accuracy is improved by 35 use spatial information. We further integrate it into a state-of-the-art LiDAR SLAM framework to improve the SLAM performance. Firstly, the range image constructed by LiDAR point cloud is used for ground extraction and non-ground point clustering. Then, the motion of objects in the scene is estimated by the difference between adjacent frames, and the segmented objects are further divided into dynamic objects and static objects by their motion features. After that, the stable feature points are extracted from the static objects. Finally, the pose transformation of adjacent frames is solved by matching feature point pairs. We evaluated the accuracy and robustness of our system on datasets with different challenging dynamic environments, and the results show our system has significant improvements in accuracy and robustness of odometry and mapping, while still maintain real-time performance, which is sufficient for autonomous robot systems and intelligent transportation applications in urban scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zy123完成签到,获得积分10
刚刚
李爱国应助等待的雪碧采纳,获得10
1秒前
勤奋小懒虫完成签到,获得积分10
1秒前
阿跃完成签到,获得积分10
2秒前
NSH完成签到 ,获得积分10
2秒前
Lucas应助忆夕采纳,获得10
3秒前
星辰大海应助细草微风岸采纳,获得10
3秒前
3秒前
dmr发布了新的文献求助10
3秒前
科研老白完成签到,获得积分10
4秒前
若清完成签到,获得积分10
5秒前
共享精神应助oavana采纳,获得10
5秒前
耕耘关注了科研通微信公众号
5秒前
5秒前
6秒前
6秒前
情怀应助红红采纳,获得50
6秒前
7秒前
酷波er应助rr采纳,获得10
8秒前
Lunjiang发布了新的文献求助10
8秒前
8秒前
香蕉觅云应助帅气的襄采纳,获得10
9秒前
9秒前
9秒前
wwz完成签到,获得积分10
10秒前
10秒前
若清发布了新的文献求助10
10秒前
mi发布了新的文献求助20
10秒前
11秒前
痞老板完成签到,获得积分10
11秒前
suzy-123发布了新的文献求助10
12秒前
12秒前
12秒前
李立关注了科研通微信公众号
13秒前
叡叡完成签到,获得积分10
13秒前
13秒前
传奇3应助可爱的芷云采纳,获得10
13秒前
贰鸟应助noexcuse1796采纳,获得50
14秒前
mky完成签到,获得积分10
14秒前
南风发布了新的文献求助10
14秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159180
求助须知:如何正确求助?哪些是违规求助? 2810321
关于积分的说明 7887314
捐赠科研通 2469183
什么是DOI,文献DOI怎么找? 1314687
科研通“疑难数据库(出版商)”最低求助积分说明 630682
版权声明 602012