Deep learning lunar penetrating radar inversion: An example from Chang’E-3

风化土 地质学 探地雷达 熔岩 反演(地质) 雷达 地震学 计算机科学 火山 电信 天体生物学 构造学 物理
作者
Zi Xian Leong,Tieyuan Zhu
标识
DOI:10.1190/segam2021-3581586.1
摘要

PreviousNext No AccessFirst International Meeting for Applied Geoscience & Energy Expanded AbstractsDeep learning lunar penetrating radar inversion: An example from Chang’E-3Authors: Zi Xian LeongTieyuan ZhuZi Xian LeongThe Pennsylvania State UniversitySearch for more papers by this author and Tieyuan ZhuThe Pennsylvania State UniversitySearch for more papers by this authorhttps://doi.org/10.1190/segam2021-3581586.1 SectionsSupplemental MaterialAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractThe Moon’s deeper subsurface layers beyond the regolith are not well-studied. Using data from Change’E-3 Yutu rover’s lunar penetrating radar (LPR), we invert for its subsurface dielectric permittivity (εr) model. We use convolutional neural network based deep learning architecture to train numerous εr profiles and their corresponding synthetic radargrams. The dielectric permittivity training dataset is designed to encapsulate all possible εr realizations that the lunar subsurface materials may have. We test our trained model on synthetic data, and on the Change’E-3 LPR data. We validate our predicted εr by comparing its forward data and the field data. Our interpretation suggests multiple layers in the upper 200 meters in the order of regolith, ejectas, Eratosthenian basaltic lava flows, paleoregolith, and lava flows from Imbrium period.Keywords: artificial intelligence, inversion, tomographyPermalink: https://doi.org/10.1190/segam2021-3581586.1FiguresReferencesRelatedDetails First International Meeting for Applied Geoscience & Energy Expanded AbstractsISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2021 Pages: 3561 publication data© 2021 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished: 01 Sep 2021 CITATION INFORMATION Zi Xian Leong and Tieyuan Zhu, (2021), "Deep learning lunar penetrating radar inversion: An example from Chang’E-3," SEG Technical Program Expanded Abstracts : 1379-1383. https://doi.org/10.1190/segam2021-3581586.1 Plain-Language Summary Keywordsartificial intelligenceinversiontomographyPDF DownloadLoading ...

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kxy完成签到,获得积分10
刚刚
刚刚
婧婧完成签到 ,获得积分10
刚刚
1秒前
2秒前
左友铭完成签到 ,获得积分10
2秒前
sweetbearm应助通~采纳,获得10
2秒前
AKLIZE完成签到,获得积分10
2秒前
刘大妮完成签到,获得积分10
3秒前
clean完成签到,获得积分20
4秒前
Lucas发布了新的文献求助10
4秒前
4秒前
朴实以松发布了新的文献求助10
4秒前
感谢橘子转发科研通微信,获得积分50
4秒前
围炉煮茶完成签到,获得积分10
5秒前
5秒前
云锋发布了新的文献求助10
6秒前
兴奋的问旋应助务实盼海采纳,获得10
6秒前
李秋静发布了新的文献求助10
6秒前
6秒前
无花果应助cookie采纳,获得10
7秒前
7秒前
斯文败类应助阳尧采纳,获得10
7秒前
8秒前
8秒前
abjz完成签到,获得积分10
8秒前
三千弱水为君饮完成签到,获得积分10
9秒前
9秒前
cata完成签到,获得积分10
9秒前
感谢79转发科研通微信,获得积分50
9秒前
9秒前
troubadourelf发布了新的文献求助10
10秒前
frank发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
感谢超帅冬易转发科研通微信,获得积分50
13秒前
13秒前
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794