Deep learning lunar penetrating radar inversion: An example from Chang’E-3

风化土 地质学 探地雷达 熔岩 反演(地质) 雷达 地震学 计算机科学 火山 电信 天体生物学 构造学 物理
作者
Zi Xian Leong,Tieyuan Zhu
标识
DOI:10.1190/segam2021-3581586.1
摘要

PreviousNext No AccessFirst International Meeting for Applied Geoscience & Energy Expanded AbstractsDeep learning lunar penetrating radar inversion: An example from Chang’E-3Authors: Zi Xian LeongTieyuan ZhuZi Xian LeongThe Pennsylvania State UniversitySearch for more papers by this author and Tieyuan ZhuThe Pennsylvania State UniversitySearch for more papers by this authorhttps://doi.org/10.1190/segam2021-3581586.1 SectionsSupplemental MaterialAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractThe Moon’s deeper subsurface layers beyond the regolith are not well-studied. Using data from Change’E-3 Yutu rover’s lunar penetrating radar (LPR), we invert for its subsurface dielectric permittivity (εr) model. We use convolutional neural network based deep learning architecture to train numerous εr profiles and their corresponding synthetic radargrams. The dielectric permittivity training dataset is designed to encapsulate all possible εr realizations that the lunar subsurface materials may have. We test our trained model on synthetic data, and on the Change’E-3 LPR data. We validate our predicted εr by comparing its forward data and the field data. Our interpretation suggests multiple layers in the upper 200 meters in the order of regolith, ejectas, Eratosthenian basaltic lava flows, paleoregolith, and lava flows from Imbrium period.Keywords: artificial intelligence, inversion, tomographyPermalink: https://doi.org/10.1190/segam2021-3581586.1FiguresReferencesRelatedDetails First International Meeting for Applied Geoscience & Energy Expanded AbstractsISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2021 Pages: 3561 publication data© 2021 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished: 01 Sep 2021 CITATION INFORMATION Zi Xian Leong and Tieyuan Zhu, (2021), "Deep learning lunar penetrating radar inversion: An example from Chang’E-3," SEG Technical Program Expanded Abstracts : 1379-1383. https://doi.org/10.1190/segam2021-3581586.1 Plain-Language Summary Keywordsartificial intelligenceinversiontomographyPDF DownloadLoading ...

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jim_aging发布了新的文献求助10
刚刚
顾矜应助sure采纳,获得10
1秒前
SYLH应助元谷雪采纳,获得10
3秒前
33发布了新的文献求助10
3秒前
4秒前
4秒前
彭于晏应助阿白采纳,获得10
5秒前
5秒前
优美鱼发布了新的文献求助10
5秒前
人参完成签到,获得积分10
6秒前
6秒前
从容的雨灵完成签到,获得积分10
6秒前
留胡子的立辉完成签到,获得积分10
7秒前
wzx完成签到,获得积分10
8秒前
起风了发布了新的文献求助10
8秒前
LZM完成签到,获得积分10
9秒前
9秒前
赘婿应助xwz采纳,获得10
9秒前
9秒前
人参发布了新的文献求助10
9秒前
10秒前
11秒前
123完成签到 ,获得积分10
12秒前
sure发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
wzx发布了新的文献求助10
15秒前
和谐的小懒猪完成签到 ,获得积分10
15秒前
16秒前
老实莫言发布了新的文献求助30
17秒前
研友_VZG7GZ应助秀丽笑容采纳,获得10
17秒前
18秒前
wendinfgmei发布了新的文献求助10
19秒前
19秒前
香蕉觅云应助艾登登采纳,获得10
19秒前
一诺相许完成签到 ,获得积分10
20秒前
xwz发布了新的文献求助10
20秒前
斯文败类应助虚拟的惜筠采纳,获得10
22秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761949
求助须知:如何正确求助?哪些是违规求助? 3305642
关于积分的说明 10135083
捐赠科研通 3019747
什么是DOI,文献DOI怎么找? 1658374
邀请新用户注册赠送积分活动 792030
科研通“疑难数据库(出版商)”最低求助积分说明 754783