数学
有界函数
分数阶微积分
数学分析
Dirichlet边界条件
边值问题
扩散方程
领域(数学分析)
衍生工具(金融)
期限(时间)
同种类的
订单(交换)
Dirichlet分布
应用数学
物理
组合数学
服务(商务)
经济
经济
金融经济学
量子力学
财务
作者
Zhi-Yuan Li,Xinchi Huang,Masahiro Yamamoto
出处
期刊:Cornell University - arXiv
日期:2021-08-25
标识
DOI:10.48550/arxiv.2108.11307
摘要
In this paper, we study the asymptotic estimate of solution for a mixed-order time-fractional diffusion equation in a bounded domain subject to the homogeneous Dirichlet boundary condition. Firstly, the unique existence and regularity estimates of solution to the initial-boundary value problem are considered. Then combined with some important properties, including a maximum principle for a time-fractional ordinary equation and a coercivity inequality for fractional derivatives, the energy method shows that the decay in time of the solution is dominated by the term $t^{-\alpha}$ as $t\to\infty$.
科研通智能强力驱动
Strongly Powered by AbleSci AI