Lattice-Coupled Si/MXene Confined by Hard Carbon for Fast Sodium-Ion Conduction

阳极 材料科学 电化学 电极 电容感应 离子 化学工程 纳米技术 光电子学 钠离子电池 法拉第效率 化学 电气工程 工程类 物理化学 有机化学
作者
Li Gou,Weifeng Jing,Ying Li,Mei Wang,Shengliang Hu,Huiqi Wang,Yan‐Bing He
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:4 (7): 7268-7277 被引量:34
标识
DOI:10.1021/acsaem.1c01396
摘要

Silicon (Si) has been ascertained as one of the most desirable anode candidates for sodium-ion batteries (SIBs), ascribed to its sizeable theoretical capacity and abundant resource. However, the inherent electrochemical inertness of crystalline Si against sodium impedes its practical use. Herein, lattice-coupled Si nanoparticles are uniformly distributed onto delaminated MXene (d-MXene) and further tightly confined by hard carbon (HC), consequently forming a 3D cross-linked (Si/d-MXene)@HC architecture as an anode material for SIBs. Coupling a carbon-coated Si anode with a conductive d-MXene matrix through the local lattice overlapping not only vastly enables the alloying reactivity of Si with Na, but also provides fast-transfer portholes for Na+ and electrons because of the capacitive-like behavior of d-MXene, thus increasing the capacity and achieving fast ion conduction. The Si/d-MXene bonded with HC, constructing a robust architecture, can effectively stabilize the whole electrode structure and accommodate the volume expansion of Si upon cycling and increase capacitive-like contributions, resulting in an enhanced capacity and excellent cycle performance as anodes for SIBs. The developed electrode thus harvests favorable electrochemical performance compared to pure Si and d-MXene electrodes, such as high initial discharge capacity (370 mAh g–1), long cycling stability (a capacity retention above 80% after 500 cycles), and superior rate performance. The protocol to enable the sodium storage performance of Si/MXene anodes by adopting the capacitive-battery dual model would inspire rather far-ranging investigations on other advanced battery systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
MM11111发布了新的文献求助10
1秒前
3秒前
科研小畅完成签到,获得积分10
3秒前
3秒前
CXS发布了新的文献求助10
6秒前
6秒前
xxw完成签到,获得积分10
7秒前
博修发布了新的文献求助10
8秒前
10秒前
smottom应助有钱采纳,获得30
11秒前
xucheng关注了科研通微信公众号
11秒前
Lucas应助清修采纳,获得10
12秒前
科研通AI5应助CXS采纳,获得10
14秒前
周舟发布了新的文献求助10
14秒前
小马哥发布了新的文献求助10
15秒前
ruanyh发布了新的文献求助20
16秒前
16秒前
18秒前
杨桃发布了新的文献求助10
19秒前
23秒前
科研通AI5应助博修采纳,获得10
23秒前
1s完成签到,获得积分20
24秒前
茯苓发布了新的文献求助10
25秒前
爆米花应助如意2023采纳,获得10
25秒前
25秒前
汉堡包应助科研通管家采纳,获得10
26秒前
Rondab应助科研通管家采纳,获得10
26秒前
SciGPT应助科研通管家采纳,获得10
26秒前
柯一一应助科研通管家采纳,获得10
26秒前
无花果应助科研通管家采纳,获得30
26秒前
CodeCraft应助科研通管家采纳,获得10
26秒前
CodeCraft应助科研通管家采纳,获得10
26秒前
汉堡包应助科研通管家采纳,获得10
26秒前
完美世界应助科研通管家采纳,获得10
27秒前
领导范儿应助科研通管家采纳,获得10
27秒前
bbb应助科研通管家采纳,获得20
27秒前
27秒前
27秒前
鹿阿布发布了新的文献求助10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967809
求助须知:如何正确求助?哪些是违规求助? 3512946
关于积分的说明 11165553
捐赠科研通 3247977
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578