ConDinet++: Full-Scale Fusion Network Based on Conditional Dilated Convolution to Extract Roads From Remote Sensing Images

计算机科学 分割 人工智能 特征提取 卷积(计算机科学) 编解码器 模式识别(心理学) 核(代数) 图像分割 编码器 特征(语言学) 计算机视觉 人工神经网络 数学 组合数学 操作系统 哲学 语言学 计算机硬件
作者
Ke Yang,Jizheng Yi,Aibin Chen,Jiaqi Liu,Wenjie Chen
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:32
标识
DOI:10.1109/lgrs.2021.3093101
摘要

Extracting roads from aerial images is an issue that has attracted much attention. Using semantic segmentation methods to extract roads often faces the problem of narrow and occluded roads. In this letter, we propose a network called ConDinet++, which improves the general codec architecture. In the encoder part, the VGG16 with pretraining parameters is utilized for the feature extraction. In the decoder part, we perform a feature fusion mechanism on the full-scale feature map. In order to improve the ability of the network to extract and integrate semantic information and further increase the receptive field, we recommend adopting the conditional dilated convolution blocks (CDBs) in the encoder, and each CDB consists of a group of cascaded conditional dilated convolutions. More importantly, the designed codec architecture can adjust the number of convolutions and the parameters of the convolution kernel according to the input data. For a slender area like a road, which occupies a small area in the picture, we use the joint loss function and introduce the joint loss of Lovasz loss and cross-entropy loss to avoid the segmentation model having a serious bias caused by highly unbalanced object sizes between roads and background. The proposed method was tested on two public datasets Massachusetts Roads Dataset and Mini DeepGlobe Road Extraction Challenge. Compared with some previous semantic segmentation networks, the proposed ConDinet++ achieved the best values of recall, F-score, and mIoU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研菜菜完成签到,获得积分10
刚刚
种花南山下关注了科研通微信公众号
1秒前
2秒前
2秒前
科西西发布了新的文献求助10
4秒前
赵楠完成签到 ,获得积分10
4秒前
5秒前
5秒前
5秒前
星辰大海应助红箭烟雨采纳,获得10
6秒前
6秒前
昼茶完成签到,获得积分10
6秒前
Vino完成签到,获得积分10
7秒前
李苗苗完成签到,获得积分10
8秒前
云上人发布了新的文献求助10
9秒前
wchwei123完成签到,获得积分10
9秒前
10秒前
昼茶发布了新的文献求助10
10秒前
任大师兄完成签到,获得积分10
11秒前
EBA发布了新的文献求助10
12秒前
舒伯特完成签到 ,获得积分10
12秒前
酷波er应助xr采纳,获得10
12秒前
14秒前
共享精神应助Dandanhuang采纳,获得10
14秒前
脑洞疼应助youasheng采纳,获得10
14秒前
15秒前
maomao发布了新的文献求助10
16秒前
17秒前
bobo发布了新的文献求助10
17秒前
茜茜公主完成签到,获得积分20
17秒前
汉堡包应助风轻云淡采纳,获得10
18秒前
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
小马甲应助迷你的唇彩采纳,获得10
20秒前
21秒前
21秒前
buerxiaoshen完成签到,获得积分20
21秒前
21秒前
buerxiaoshen发布了新的文献求助10
24秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979779
求助须知:如何正确求助?哪些是违规求助? 3523794
关于积分的说明 11218782
捐赠科研通 3261278
什么是DOI,文献DOI怎么找? 1800526
邀请新用户注册赠送积分活动 879143
科研通“疑难数据库(出版商)”最低求助积分说明 807182