Knowledge- and Data-driven Services for Energy Systems using Graph Neural Networks

计算机科学 智能电网 分布式计算 概率逻辑 网格 分布式发电 电力系统 杠杆(统计) 可再生能源 人工智能 功率(物理) 电气工程 工程类 数学 量子力学 几何学 物理
作者
Francesco Fusco,Bradley Eck,Robert Gormally,Mark Purcell,Seshu Tirupathi
标识
DOI:10.1109/bigdata50022.2020.9377845
摘要

The transition away from carbon-based energy sources poses several challenges for the operation of electricity distribution systems. Increasing shares of distributed energy resources (e.g. renewable energy generators, electric vehicles) and internet-connected sensing and control devices (e.g. smart heating and cooling) require new tools to support accurate, data-driven decision making. Modelling the effect of such growing complexity in the electrical grid is possible in principle using state-of-the-art power-power flow models. In practice, the detailed information needed for these physical simulations may be unknown or prohibitively expensive to obtain. Hence, data-driven approaches to power systems modelling, including feed-forward neural networks and auto-encoders, have been studied to leverage the increasing availability of sensor data, but have seen limited practical adoption due to lack of transparency and inefficiencies on large-scale problems. Our work addresses this gap by proposing a data- and knowledge-driven probabilistic graphical model for energy systems based on the framework of graph neural networks (GNNs). The model can explicitly factor in domain knowledge, in the form of grid topology or physics constraints, thus resulting in sparser architectures and much smaller parameters dimensionality when compared with traditional machine-learning models with similar accuracy. Results obtained from a real-world smart-grid demonstration project show how the GNN was used to inform grid congestion predictions and market bidding services for a distribution system operator participating in an energy flexibility market.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷酷稀发布了新的文献求助10
1秒前
小七完成签到 ,获得积分10
2秒前
2秒前
二行发布了新的文献求助10
3秒前
Leif应助无与伦比采纳,获得20
4秒前
lyting完成签到,获得积分10
5秒前
doctor_loong完成签到 ,获得积分10
5秒前
悲伤西米露应助1222采纳,获得10
5秒前
6秒前
棍棍来也完成签到,获得积分10
9秒前
du发布了新的文献求助10
10秒前
豆浆油条完成签到 ,获得积分10
10秒前
Owen应助寒灯独夜人采纳,获得10
12秒前
属实有点拉胯完成签到 ,获得积分10
12秒前
KID完成签到,获得积分10
13秒前
14秒前
冷酷稀完成签到,获得积分20
17秒前
竹子完成签到,获得积分10
18秒前
牛牛牛发布了新的文献求助10
18秒前
李健应助du采纳,获得10
19秒前
孙ym完成签到,获得积分10
21秒前
可爱的函函应助包寄容采纳,获得30
25秒前
于晓雅完成签到,获得积分10
25秒前
du完成签到,获得积分10
25秒前
不发sci不改名完成签到,获得积分10
26秒前
沉静夜安发布了新的文献求助10
27秒前
香蕉觅云应助科研通管家采纳,获得10
29秒前
共享精神应助科研通管家采纳,获得10
29秒前
酷波er应助科研通管家采纳,获得10
29秒前
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
领导范儿应助科研通管家采纳,获得30
29秒前
JamesPei应助科研通管家采纳,获得10
29秒前
彭于晏应助科研通管家采纳,获得10
30秒前
烟花应助科研通管家采纳,获得30
30秒前
30秒前
30秒前
酷波er应助科研通管家采纳,获得10
30秒前
32秒前
在水一方应助xxx采纳,获得10
32秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737385
求助须知:如何正确求助?哪些是违规求助? 3281209
关于积分的说明 10023728
捐赠科研通 2997939
什么是DOI,文献DOI怎么找? 1644880
邀请新用户注册赠送积分活动 782304
科研通“疑难数据库(出版商)”最低求助积分说明 749762