亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An online transfer learning-based remaining useful life prediction method of ball bearings

预言 人工智能 学习迁移 计算机科学 机器学习 人工神经网络 数据挖掘 模式识别(心理学) 工程类
作者
Fuchuan Zeng,Yiming Li,Yuhang Jiang,Guiqiu Song
出处
期刊:Measurement [Elsevier BV]
卷期号:176: 109201-109201 被引量:39
标识
DOI:10.1016/j.measurement.2021.109201
摘要

In recent years, many artificial intelligence-based approaches are proposed for remaining useful life (RUL) prediction of bearings. However, most existing studies neglected the following problems: (1) Run-to-failure data of bearings of are generally less available; (2) Degradation trends of bearings under different working conditions are diverse; (3) Unlabeled data of bearings acquired in the online stage have not been taken into account. To solve these problems mentioned above, an online transfer learning method is proposed. In the offline stage, a deep learning model is established through semi-supervised training to align feature spaces of representations from different domains. Then, in the online stage, unlabeled data from target domain are utilized to fine-tune parameters of the established model. Finally, RUL of specified bearings can be estimated precisely by the established model. The effectiveness and superiority of the proposed method in transfer prognostics tasks of bearings are verified by case studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
20秒前
忧郁小鸽子完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
41秒前
cadnash完成签到,获得积分10
1分钟前
1分钟前
善学以致用应助桃欣采纳,获得10
1分钟前
馆长应助科研通管家采纳,获得10
1分钟前
馆长应助科研通管家采纳,获得10
1分钟前
1分钟前
iman完成签到,获得积分10
1分钟前
共享精神应助Dreamer.采纳,获得10
2分钟前
愉快的花卷完成签到,获得积分10
2分钟前
田様应助愉快的花卷采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
Dreamer.发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
cqhecq发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Virtual应助科研通管家采纳,获得10
3分钟前
桃欣发布了新的文献求助10
3分钟前
桃欣完成签到,获得积分10
3分钟前
5分钟前
FashionBoy应助guhuihaozi采纳,获得10
5分钟前
zzz完成签到,获得积分10
5分钟前
深情安青应助Dreamer.采纳,获得10
5分钟前
5分钟前
馆长应助科研通管家采纳,获得10
5分钟前
馆长应助科研通管家采纳,获得10
5分钟前
伏城完成签到 ,获得积分10
5分钟前
共享精神应助王大纯采纳,获得10
6分钟前
王大纯完成签到,获得积分20
6分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595660
求助须知:如何正确求助?哪些是违规求助? 4007972
关于积分的说明 12408710
捐赠科研通 3686659
什么是DOI,文献DOI怎么找? 2032005
邀请新用户注册赠送积分活动 1065231
科研通“疑难数据库(出版商)”最低求助积分说明 950587