蒸发器
材料科学
聚光镜(光学)
机械
流量(数学)
蒸发
流动可视化
横截面(物理)
气泡
热力学
光学
物理
热交换器
量子力学
光源
作者
Burak Markal,Ayse Candan Candere,Mete Avci,Orhan Aydin
标识
DOI:10.1016/j.icheatmasstransfer.2021.105583
摘要
Effect of double cross sectional ratio on performance characteristics of pulsating heat pipes is experimentally investigated. The cross sectional ratios in the evaporator and condenser sides are different from each other, and this novel gradually constricted geometry provides to boost flow circulation and to maintain a stable performance regardless of orientation. Tests are performed for different values of inclination angle (0°, 30°, 60° and 90°) and filling ratio (20, 40 and 60%). Also, results of originally structured closed loop flat plate pulsating heat pipe (novel design, ND) are compared with those of the conventional pulsating one with uniform cross section (conventional design, CD). Measurements are supported by high speed flow visualization. It is shown that the ND shows better thermal performance than the CD, and when appropriate filling ratio (40%) is provided, the ND presents orientation-independent running. A turn of the ND is divided into three different zones, and a pressure-balance equation is presented following a detailed flow analysis. Rapid bubble growth instability and annular flow pattern characterized by thin film evaporation are two important characteristics observed for the ND.
科研通智能强力驱动
Strongly Powered by AbleSci AI