角质酶
对苯二甲酸
水解
化学
对苯二甲酸二甲酯
乙烯
焓
阿累尼乌斯方程
催化作用
活化能
酶水解
化学工程
有机化学
热力学
聚酯纤维
工程类
物理
作者
Erika de Queiros Eugenio,Ivone Sampaio Pereira Campisano,Aline Machado de Castro,Maria Alice Zarur Coelho,Marta A. P. Langone
出处
期刊:Research Square - Research Square
日期:2021-02-17
标识
DOI:10.21203/rs.3.rs-204586/v1
摘要
Abstract The search for a straightforward technology for post-consumer poly(ethylene terephthalate) (PC-PET) degradation is essential to develop a circular economy. In this context, PET hydrolases such as cutinases can be used as bioplatforms for this purpose. Humicola insolens cutinase (HiC) is a promising biocatalyst for PC-PET hydrolysis. Therefore, this work evaluated a kinetic model, and it was observed that the HiC seems not to be inhibited by any of the main PET hydrolysis products such as terephthalic acid (TPA), mono-(2-hydroxyethyl) terephthalate (MHET), and bis-(2-hydroxyethyl) terephthalate (BHET). The excellent fitting of the experimental data to a kinetic model based on enzyme-limiting conditions validates its employment for describing the enzymatic PC-PET hydrolysis using two-particle size ranges (0.075-0.250, and 0.250-0.600 mm) and temperatures (40, 50, 55, 60, 70, and 80 ºC). The Arrhenius law provided a reliable parameter (activation energy of 98.9 ± 2.6 kJ mol −1 ) for enzymatic hydrolysis, which compares well with reported values for chemical PET hydrolysis. The thermodynamic parameters of PC-PET hydrolysis corresponded to activation enthalpy of 96.1 ± 3.6 kJ mol -1 and activation entropy of 10.8 ± 9.8 J mol -1 K -1 . Thus, the observed rate enhancement with temperature was attributed to the enthalpic contribution, and this understanding is helpful to the comprehension of enzymatic behavior on hydrolysis reaction.
科研通智能强力驱动
Strongly Powered by AbleSci AI