Nanoporous nickel thin film anode optimization for low-temperature solid oxide fuel cells

材料科学 阳极 纳米孔 化学工程 氧化物 电解质 氧化钇稳定氧化锆 固体氧化物燃料电池 薄膜 纳米结构 基质(水族馆) 立方氧化锆 纳米技术 复合材料 冶金 陶瓷 电极 化学 地质学 工程类 物理化学 海洋学
作者
Myung Seok Lee,Sanghoon Lee,Wonyeop Jeong,Sangbong Ryu,Wonjong Yu,Yoon Ho Lee,Gu Young Cho,Suk Won
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:46 (73): 36445-36453 被引量:14
标识
DOI:10.1016/j.ijhydene.2021.08.138
摘要

Thin film solid oxide fuel cells (TF–SOFCs) having anode–substrate nanostructure that was optimized for the low-temperature operation were fabricated. Nickel thin film anodes with four different anode thicknesses were deposited on anodic aluminum oxide templates, nanoporous substrates having two different pore sizes, by the sputtering method. Subsequently, a yttria-stabilized zirconia (YSZ) electrolyte and platinum cathode were deposited on them, which completed the entire fuel cell structure. The anode nanostructure of fuel cells in six combinations was analyzed by the cross-sectional view, surface microscopy method, and three-dimensional morphology observation. Those investigations enabled the anode nanostructure to be identified, such as the anode porosity and the roughness of the interface between anodes and electrolytes. Then, the six TF–SOFCs were electrochemically characterized in a 500 °C operating environment. The maximum power densities were obtained through the i–V–P curves, and the highest performance of 294.1 mW/cm2 was measured in the cell having a combination of 200 nm–sized porous aluminum anodic oxide (AAO) and 1200 nm–thick Ni anode. This showed up to 20.1% improvement over the other cells. EIS analysis showed that the optimized ohmic and faradaic resistance originated from each part of the unique TF–SOFC structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旺德福完成签到 ,获得积分10
刚刚
kevin完成签到,获得积分10
刚刚
naomi完成签到 ,获得积分10
刚刚
桐桐应助玉崟采纳,获得10
1秒前
慕青应助地狱跳跳虎采纳,获得10
1秒前
1秒前
英姑应助Autoimmune采纳,获得10
2秒前
Godspeed完成签到,获得积分10
2秒前
静时完成签到,获得积分10
2秒前
gg发布了新的文献求助10
2秒前
2秒前
醒不来的猫完成签到,获得积分10
2秒前
请叫我风吹麦浪应助新一采纳,获得30
2秒前
不对也没错给不对也没错的求助进行了留言
3秒前
3秒前
可爱的函函应助自由寻菱采纳,获得20
3秒前
SandyH发布了新的文献求助10
3秒前
Shan完成签到 ,获得积分10
4秒前
4秒前
玛卡巴卡关注了科研通微信公众号
4秒前
hu970发布了新的文献求助30
4秒前
5秒前
腼腆的安雁完成签到 ,获得积分20
5秒前
中大王发布了新的文献求助10
5秒前
欢呼鼠标完成签到,获得积分20
6秒前
kk完成签到 ,获得积分10
6秒前
jxcandice完成签到,获得积分10
6秒前
悟空完成签到,获得积分10
6秒前
YY完成签到,获得积分10
7秒前
让大佐眯会吧完成签到,获得积分20
7秒前
Akim应助菊菊采纳,获得10
7秒前
7秒前
刘星星发布了新的文献求助10
7秒前
Vii完成签到,获得积分10
8秒前
8秒前
8秒前
星辰大海应助yatou5651采纳,获得10
9秒前
夜空中最亮的星完成签到,获得积分10
9秒前
咯咯咯发布了新的文献求助20
10秒前
a1oft发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762