材料科学
凝聚态物理
量子点
热电效应
微晶
成核
热电材料
声子
塞贝克系数
热导率
纳米技术
复合材料
热力学
物理
有机化学
化学
冶金
作者
Shuang Li,Xunuo Lou,Bo Zou,Yunxiang Hou,Jian Zhang,Di Li,Jun Fang,Tao Feng,Dewei Zhang,Yousong Liu,Jizi Liu,Guodong Tang
标识
DOI:10.1016/j.mtphys.2021.100542
摘要
Here, a p-type polycrystalline SnSe integrated with PbSe quantum dots is fabricated by an in situ magnetic field-assisted hydrothermal route. The decrease of the critical nucleation free energy and increase of homogeneous nucleation rate lead to the formation of PbSe quantum dots under high magnetic field. The enhanced density of states due to PbSe quantum dots causes significantly enhanced Seebeck coefficients and power factor. A large integral area of power factor over the full temperature range is optimized. The lattice strain induced by dislocations and stacking faults shortens the phonon relaxation time, leading to an ultralow lattice thermal conductivity (0.32 W m−1 K−1 at 873 K perpendicular to the pressing direction). Consequently, these electronic and thermal effects contribute to a high ZT of ∼1.9 at 873 K and an outstanding average ZT of 0.71 in polycrystalline SnSe. The combination of introducing PbSe quantum dots functional units and manipulating lattice strain provides a new perspective for designing high performance thermoelectric devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI