亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Machine Learning Model to Predict the Triple Negative Breast Cancer Immune Subtype

三阴性乳腺癌 免疫系统 乳腺癌 医学 肿瘤科 癌症 计算生物学 内科学 癌症研究 免疫学 生物
作者
Zihao Chen,Maoli Wang,Rudy Leon De Wilde,Ruifa Feng,Mingqiang Su,Luz Angela Torres-de la Roche,Wenjie Shi
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:12 被引量:45
标识
DOI:10.3389/fimmu.2021.749459
摘要

Background Immune checkpoint blockade (ICB) has been approved for the treatment of triple-negative breast cancer (TNBC), since it significantly improved the progression-free survival (PFS). However, only about 10% of TNBC patients could achieve the complete response (CR) to ICB because of the low response rate and potential adverse reactions to ICB. Methods Open datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were downloaded to perform an unsupervised clustering analysis to identify the immune subtype according to the expression profiles. The prognosis, enriched pathways, and the ICB indicators were compared between immune subtypes. Afterward, samples from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset were used to validate the correlation of immune subtype with prognosis. Data from patients who received ICB were selected to validate the correlation of the immune subtype with ICB response. Machine learning models were used to build a visual web server to predict the immune subtype of TNBC patients requiring ICB. Results A total of eight open datasets including 931 TNBC samples were used for the unsupervised clustering. Two novel immune subtypes (referred to as S1 and S2) were identified among TNBC patients. Compared with S2, S1 was associated with higher immune scores, higher levels of immune cells, and a better prognosis for immunotherapy. In the validation dataset, subtype 1 samples had a better prognosis than sub type 2 samples, no matter in overall survival (OS) (p = 0.00036) or relapse-free survival (RFS) (p = 0.0022). Bioinformatics analysis identified 11 hub genes (LCK, IL2RG, CD3G, STAT1, CD247, IL2RB, CD3D, IRF1, OAS2, IRF4, and IFNG) related to the immune subtype. A robust machine learning model based on random forest algorithm was established by 11 hub genes, and it performed reasonably well with area Under the Curve of the receiver operating characteristic (AUC) values = 0.76. An open and free web server based on the random forest model, named as triple-negative breast cancer immune subtype (TNBCIS), was developed and is available from https://immunotypes.shinyapps.io/TNBCIS/ . Conclusion TNBC open datasets allowed us to stratify samples into distinct immunotherapy response subgroups according to gene expression profiles. Based on two novel subtypes, candidates for ICB with a higher response rate and better prognosis could be selected by using the free visual online web server that we designed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷人猕猴桃完成签到 ,获得积分10
17秒前
如意的馒头完成签到 ,获得积分10
17秒前
科研雪瑞完成签到,获得积分10
33秒前
少女徐必成完成签到 ,获得积分10
38秒前
CGFHEMAN完成签到 ,获得积分10
48秒前
魂逝之完成签到,获得积分10
54秒前
55秒前
科研通AI2S应助科研通管家采纳,获得10
56秒前
科研通AI2S应助科研通管家采纳,获得10
56秒前
Lucas应助科研通管家采纳,获得10
57秒前
爱静静应助科研通管家采纳,获得20
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
liang完成签到 ,获得积分10
1分钟前
psyche发布了新的文献求助10
1分钟前
1分钟前
l1发布了新的文献求助10
1分钟前
1分钟前
yamo发布了新的文献求助10
1分钟前
1分钟前
1分钟前
HYT完成签到 ,获得积分10
1分钟前
医疗废物专用车乘客完成签到,获得积分10
2分钟前
2分钟前
lzt完成签到 ,获得积分10
2分钟前
刻苦黎云完成签到,获得积分10
2分钟前
bluebell完成签到,获得积分10
2分钟前
CodeCraft应助l1采纳,获得10
2分钟前
艺_完成签到 ,获得积分10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
顾矜应助科研通管家采纳,获得30
2分钟前
自由冰凡完成签到 ,获得积分10
3分钟前
dd发布了新的文献求助10
3分钟前
姜忆霜完成签到 ,获得积分10
3分钟前
3分钟前
dd完成签到,获得积分10
3分钟前
原始动物研究者协会完成签到 ,获得积分10
3分钟前
陈靖发布了新的文献求助10
3分钟前
3分钟前
熬夜猝死的我完成签到 ,获得积分10
3分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
encyclopedia of computational mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268608
求助须知:如何正确求助?哪些是违规求助? 2908068
关于积分的说明 8344414
捐赠科研通 2578506
什么是DOI,文献DOI怎么找? 1402040
科研通“疑难数据库(出版商)”最低求助积分说明 655240
邀请新用户注册赠送积分活动 634415