多硫化物
材料科学
分离器(采油)
电负性
磺酸盐
电解质
阴极
密度泛函理论
硫黄
化学工程
拉曼光谱
纳米技术
电极
物理化学
有机化学
化学
冶金
热力学
计算化学
工程类
物理
光学
钠
作者
Jie Xu,Shuhao An,Xianyu Song,Yongjie Cao,Nan Wang,Xuan Qiu,Yu Zhang,Jiawei Chen,Xianli Duan,Jianhang Huang,Wei Li,Yonggang Wang
标识
DOI:10.1002/adma.202105178
摘要
Abstract Lithium–sulfur (Li–S) batteries are held great promise for next‐generation high‐energy‐density devices; however, polysulfide shuttle and Li‐dendrite growth severely hinders their commercial production. Herein, a sulfonate‐rich COF (SCOF‐2) is designed, synthesized, and used to modify the separator of Li–S batteries, providing a solution for the above challenges. It is found that the SCOF‐2 features stronger electronegativity and larger interlayer spacing than that of none/monosulfonate COFs, which can facilitate the Li + migration and alleviate the formation of Li‐dendrites. Density functional theory (DFT) calculations and in situ Raman analysis demonstrate that the SCOF‐2 possesses a narrow bandgap and strong interaction on sulfur species, thereby suppressing self‐discharge behavior. As a result, the modified batteries deliver an ultralow attenuation rate of 0.047% per cycle over 800 cycles at 1 C, and excellent anti‐self‐discharge performance by a low‐capacity attenuation of 6.0% over one week. Additionally, even with the high‐sulfur‐loading cathode (3.2–8.2 mg s cm ‐2 ) and lean electrolyte (5 µ L mg s ‐1 ), the batteries still exhibit ≈ 80% capacity retention over 100 cycles, showing great potential for practical application.
科研通智能强力驱动
Strongly Powered by AbleSci AI