Automated Feature Selection: A Reinforcement Learning Perspective

强化学习 计算机科学 特征学习 人工智能 特征选择 机器学习 自编码 特征(语言学) 维数之咒 Softmax函数 卷积神经网络 人工神经网络 哲学 语言学
作者
Kunpeng Liu,Yanjie Fu,Le Wu,Xiaolin Li,Charų C. Aggarwal,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-1 被引量:45
标识
DOI:10.1109/tkde.2021.3115477
摘要

Feature selection is a critical step in machine learning that selects the most important features for a subsequent prediction task. Effective feature selection can help to reduce dimensionality, improve prediction accuracy, and increase result comprehensibility. It is traditionally challenging to find the optimal feature subset from the feature subset space as the space could be very large. While much effort has been made on feature selection, reinforcement learning can provide a new perspective towards a more globally-optimal searching strategy. In the preliminary work, we propose a multi-agent reinforcement learning framework for the feature selection problem. Specifically, we first reformulate feature selection with a reinforcement learning framework by regarding each feature as an agent. Besides, we obtain the state of the environment in three ways, i.e., statistic description, autoencoder, and graph convolutional network (GCN), in order to derive a fixed-length state representation as the input of reinforcement learning. In addition, we study how the coordination among feature agents can be improved by a more effective reward scheme. Also, we provide a GMM-based generative rectified sampling strategy to accelerate the convergence of multi-agent reinforcement learning. Our method searches the feature subset space more globally and can be easily adapted to real-time scenarios due to the nature of reinforcement learning. In the extended version, we further accelerate the framework from two aspects. From the sampling aspect, we show the indirect acceleration by proposing a rank-based softmax sampling strategy. From the exploration aspect, we show the direct acceleration by proposing an interactive reinforcement learning (IRL)-based exploration strategy. Extensive experimental results show the significant improvement of the proposed method over conventional approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Xin完成签到,获得积分10
刚刚
1秒前
2秒前
凑个数完成签到 ,获得积分10
2秒前
CM发布了新的文献求助10
2秒前
研友_ZlPDdZ发布了新的文献求助10
2秒前
小透明发布了新的文献求助10
3秒前
3秒前
fly完成签到,获得积分10
3秒前
3秒前
大气百招给wen的求助进行了留言
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
hahau完成签到,获得积分10
4秒前
感性的寄真完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
醉熏的水绿完成签到 ,获得积分10
6秒前
Cristel完成签到,获得积分10
6秒前
大个应助欣喜安蕾采纳,获得20
6秒前
毛毛弟发布了新的文献求助10
6秒前
咪花嗦完成签到,获得积分10
6秒前
点到为止发布了新的文献求助10
7秒前
彩色不评完成签到,获得积分10
7秒前
默默完成签到,获得积分10
8秒前
华仔应助jingcheng采纳,获得10
8秒前
8秒前
Cindy发布了新的文献求助10
9秒前
上官若男应助仵一采纳,获得10
9秒前
研友_ZlPDdZ完成签到,获得积分20
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
高贵逍遥发布了新的文献求助10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
大龙哥886应助科研通管家采纳,获得10
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667657
求助须知:如何正确求助?哪些是违规求助? 3226188
关于积分的说明 9768281
捐赠科研通 2936167
什么是DOI,文献DOI怎么找? 1608152
邀请新用户注册赠送积分活动 759520
科研通“疑难数据库(出版商)”最低求助积分说明 735404