亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing the accuracy of machine learning models using the super learner technique in digital soil mapping

数字土壤制图 计算机科学 航程(航空) 协变量 特征(语言学) 机器学习 多样性(控制论) 基础(拓扑) 土壤图 土壤科学 人工智能 数据挖掘 环境科学 数学 土壤水分 工程类 数学分析 语言学 哲学 航空航天工程
作者
Ruhollah Taghizadeh‐Mehrjardi,Nikou Hamzehpour,Maryam Hassanzadeh,Brandon Heung,Maryam Ghebleh Goydaragh,Karsten Schmidt,Thomas Scholten
出处
期刊:Geoderma [Elsevier]
卷期号:399: 115108-115108 被引量:64
标识
DOI:10.1016/j.geoderma.2021.115108
摘要

Digital soil mapping approaches predict soil properties based on the relationships between soil observations and related environmental covariates using techniques such as machine learning (ML) models. In this research, a wide range of ML models (12 base learners) were tested in predicting and mapping soil properties. Furthermore, a super learner approach was used to improve model accuracy by combining the predictions of the base learners. A major challenge of using super learner and complex models is that the exact contribution of individual covariates in the overall prediction is not always known. To address this issue, permutation feature importance (PFI) analysis was applied as a model-agnostic interpretation tool. The weights assigned to each ML base learner obtained from super learner, and feature importance values obtained from each ML base learner were used to quantify the contribution of individual covariates on the final prediction. The super learner and PFI techniques were tested by predicting a variety of soil physical and chemical properties of the Urmia Lake playa in Iran. As expected, the results indicated that the super learner had substantially higher accuracies for predicting soil properties in comparison to the individual base learners. For instance, the super learner showed an improved performance in comparison to linear regression by decreasing the root mean square error by an average of 46%. The PFI analysis revealed the important contribution of geomorphic and groundwater data in predicting soil properties. Overall, the proposed approach may be used for improving accuracy of ML models in digital soil mapping.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
7秒前
大个应助SKY采纳,获得10
10秒前
12秒前
优美的谷完成签到,获得积分10
16秒前
17秒前
bgt完成签到 ,获得积分10
17秒前
逆天大脚完成签到,获得积分10
17秒前
SKY发布了新的文献求助10
22秒前
29秒前
32秒前
hahahan完成签到 ,获得积分10
33秒前
ceeray23发布了新的文献求助20
34秒前
dadaup完成签到 ,获得积分10
35秒前
SKY完成签到,获得积分10
36秒前
jyy完成签到,获得积分10
36秒前
jingutaimi完成签到,获得积分10
40秒前
42秒前
48秒前
小老虎完成签到,获得积分10
49秒前
54秒前
超级的路人完成签到,获得积分10
1分钟前
冷傲忆彤完成签到 ,获得积分10
1分钟前
cheqi完成签到 ,获得积分10
1分钟前
九黎完成签到 ,获得积分10
1分钟前
1分钟前
酷波er应助陈志亨采纳,获得10
1分钟前
跳跃猫咪完成签到 ,获得积分10
1分钟前
Harrison发布了新的文献求助10
1分钟前
CodeCraft应助默默冬瓜采纳,获得10
1分钟前
逆天大脚发布了新的文献求助10
1分钟前
万能图书馆应助酒颜采纳,获得10
1分钟前
histamin完成签到,获得积分10
1分钟前
1分钟前
无花果应助个性的长颈鹿采纳,获得10
1分钟前
1分钟前
陈志亨发布了新的文献求助10
1分钟前
1分钟前
小洁完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515585
求助须知:如何正确求助?哪些是违规求助? 4608975
关于积分的说明 14514228
捐赠科研通 4545476
什么是DOI,文献DOI怎么找? 2490550
邀请新用户注册赠送积分活动 1472489
关于科研通互助平台的介绍 1444181