Enhancing the accuracy of machine learning models using the super learner technique in digital soil mapping

数字土壤制图 计算机科学 航程(航空) 协变量 特征(语言学) 机器学习 多样性(控制论) 基础(拓扑) 土壤图 土壤科学 人工智能 数据挖掘 环境科学 数学 土壤水分 工程类 数学分析 语言学 哲学 航空航天工程
作者
Ruhollah Taghizadeh‐Mehrjardi,Nikou Hamzehpour,Maryam Hassanzadeh,Brandon Heung,Maryam Ghebleh Goydaragh,Karsten Schmidt,Thomas Scholten
出处
期刊:Geoderma [Elsevier BV]
卷期号:399: 115108-115108 被引量:64
标识
DOI:10.1016/j.geoderma.2021.115108
摘要

Digital soil mapping approaches predict soil properties based on the relationships between soil observations and related environmental covariates using techniques such as machine learning (ML) models. In this research, a wide range of ML models (12 base learners) were tested in predicting and mapping soil properties. Furthermore, a super learner approach was used to improve model accuracy by combining the predictions of the base learners. A major challenge of using super learner and complex models is that the exact contribution of individual covariates in the overall prediction is not always known. To address this issue, permutation feature importance (PFI) analysis was applied as a model-agnostic interpretation tool. The weights assigned to each ML base learner obtained from super learner, and feature importance values obtained from each ML base learner were used to quantify the contribution of individual covariates on the final prediction. The super learner and PFI techniques were tested by predicting a variety of soil physical and chemical properties of the Urmia Lake playa in Iran. As expected, the results indicated that the super learner had substantially higher accuracies for predicting soil properties in comparison to the individual base learners. For instance, the super learner showed an improved performance in comparison to linear regression by decreasing the root mean square error by an average of 46%. The PFI analysis revealed the important contribution of geomorphic and groundwater data in predicting soil properties. Overall, the proposed approach may be used for improving accuracy of ML models in digital soil mapping.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gelinhao完成签到,获得积分10
刚刚
鹤扰完成签到,获得积分10
1秒前
WW发布了新的文献求助10
1秒前
受伤听露完成签到,获得积分10
1秒前
科目三应助青柠大大采纳,获得10
2秒前
MQQ完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
BLUICE发布了新的文献求助30
3秒前
iNk应助好学的猪采纳,获得10
3秒前
mark707完成签到,获得积分20
3秒前
如意雅山发布了新的文献求助10
3秒前
msk完成签到 ,获得积分10
4秒前
4秒前
4秒前
爆米花应助健忘的无色采纳,获得10
4秒前
萝卜卷心菜完成签到 ,获得积分10
4秒前
木木应助畅快的书兰采纳,获得10
5秒前
5秒前
SID完成签到,获得积分10
5秒前
Voloid完成签到,获得积分10
6秒前
6秒前
大肉猪完成签到,获得积分10
6秒前
充电宝应助you采纳,获得10
6秒前
7秒前
培a完成签到,获得积分10
7秒前
朴素绿真完成签到,获得积分10
7秒前
写得出发的中完成签到,获得积分10
7秒前
过氧化氢应助咖可乐采纳,获得10
8秒前
8秒前
邺水朱华完成签到,获得积分10
8秒前
8秒前
ZSJ完成签到,获得积分10
9秒前
曾经念真应助完美的凡灵采纳,获得10
9秒前
领导范儿应助幽默的书本采纳,获得30
10秒前
10秒前
11秒前
包凡之完成签到,获得积分10
11秒前
honeybee完成签到,获得积分10
11秒前
张雅雅发布了新的文献求助10
11秒前
似画发布了新的文献求助10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582