Enhancing the accuracy of machine learning models using the super learner technique in digital soil mapping

数字土壤制图 计算机科学 航程(航空) 协变量 特征(语言学) 机器学习 多样性(控制论) 基础(拓扑) 土壤图 土壤科学 人工智能 数据挖掘 环境科学 数学 土壤水分 工程类 哲学 航空航天工程 数学分析 语言学
作者
Ruhollah Taghizadeh‐Mehrjardi,Nikou Hamzehpour,Maryam Hassanzadeh,Brandon Heung,Maryam Ghebleh Goydaragh,Karsten Schmidt,Thomas Scholten
出处
期刊:Geoderma [Elsevier]
卷期号:399: 115108-115108 被引量:64
标识
DOI:10.1016/j.geoderma.2021.115108
摘要

Digital soil mapping approaches predict soil properties based on the relationships between soil observations and related environmental covariates using techniques such as machine learning (ML) models. In this research, a wide range of ML models (12 base learners) were tested in predicting and mapping soil properties. Furthermore, a super learner approach was used to improve model accuracy by combining the predictions of the base learners. A major challenge of using super learner and complex models is that the exact contribution of individual covariates in the overall prediction is not always known. To address this issue, permutation feature importance (PFI) analysis was applied as a model-agnostic interpretation tool. The weights assigned to each ML base learner obtained from super learner, and feature importance values obtained from each ML base learner were used to quantify the contribution of individual covariates on the final prediction. The super learner and PFI techniques were tested by predicting a variety of soil physical and chemical properties of the Urmia Lake playa in Iran. As expected, the results indicated that the super learner had substantially higher accuracies for predicting soil properties in comparison to the individual base learners. For instance, the super learner showed an improved performance in comparison to linear regression by decreasing the root mean square error by an average of 46%. The PFI analysis revealed the important contribution of geomorphic and groundwater data in predicting soil properties. Overall, the proposed approach may be used for improving accuracy of ML models in digital soil mapping.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aprilapple发布了新的文献求助10
1秒前
1秒前
feng发布了新的文献求助10
2秒前
sunshine完成签到,获得积分10
2秒前
药化小硕发布了新的文献求助10
3秒前
3秒前
3秒前
FashionBoy应助drizzling采纳,获得10
3秒前
tsy发布了新的文献求助10
4秒前
Jasper应助热情紫丝采纳,获得10
4秒前
耍酷大炮发布了新的文献求助10
4秒前
Qyelty发布了新的文献求助10
5秒前
5秒前
5秒前
天天快乐应助li采纳,获得10
6秒前
butu发布了新的文献求助10
7秒前
淡然白安发布了新的文献求助30
7秒前
7秒前
俏皮含烟发布了新的文献求助10
7秒前
8秒前
8秒前
可爱的函函应助zy采纳,获得10
8秒前
midokaori完成签到,获得积分20
9秒前
9秒前
Gergeo应助研ZZ采纳,获得20
9秒前
小雨完成签到,获得积分10
10秒前
yayabing完成签到,获得积分10
10秒前
10秒前
Sally发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
11秒前
aaa完成签到,获得积分10
13秒前
从容雨筠发布了新的文献求助20
14秒前
樊傲云发布了新的文献求助10
14秒前
Akim应助li采纳,获得10
14秒前
16秒前
Cupid完成签到,获得积分10
16秒前
点点完成签到,获得积分10
16秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157055
求助须知:如何正确求助?哪些是违规求助? 2808405
关于积分的说明 7877451
捐赠科研通 2466898
什么是DOI,文献DOI怎么找? 1313069
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919