Enhancing the accuracy of machine learning models using the super learner technique in digital soil mapping

数字土壤制图 计算机科学 航程(航空) 协变量 特征(语言学) 机器学习 多样性(控制论) 基础(拓扑) 土壤图 土壤科学 人工智能 数据挖掘 环境科学 数学 土壤水分 工程类 数学分析 语言学 哲学 航空航天工程
作者
Ruhollah Taghizadeh‐Mehrjardi,Nikou Hamzehpour,Maryam Hassanzadeh,Brandon Heung,Maryam Ghebleh Goydaragh,Karsten Schmidt,Thomas Scholten
出处
期刊:Geoderma [Elsevier]
卷期号:399: 115108-115108 被引量:64
标识
DOI:10.1016/j.geoderma.2021.115108
摘要

Digital soil mapping approaches predict soil properties based on the relationships between soil observations and related environmental covariates using techniques such as machine learning (ML) models. In this research, a wide range of ML models (12 base learners) were tested in predicting and mapping soil properties. Furthermore, a super learner approach was used to improve model accuracy by combining the predictions of the base learners. A major challenge of using super learner and complex models is that the exact contribution of individual covariates in the overall prediction is not always known. To address this issue, permutation feature importance (PFI) analysis was applied as a model-agnostic interpretation tool. The weights assigned to each ML base learner obtained from super learner, and feature importance values obtained from each ML base learner were used to quantify the contribution of individual covariates on the final prediction. The super learner and PFI techniques were tested by predicting a variety of soil physical and chemical properties of the Urmia Lake playa in Iran. As expected, the results indicated that the super learner had substantially higher accuracies for predicting soil properties in comparison to the individual base learners. For instance, the super learner showed an improved performance in comparison to linear regression by decreasing the root mean square error by an average of 46%. The PFI analysis revealed the important contribution of geomorphic and groundwater data in predicting soil properties. Overall, the proposed approach may be used for improving accuracy of ML models in digital soil mapping.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麞欎完成签到,获得积分10
刚刚
赤练仙子完成签到,获得积分10
刚刚
jojo发布了新的文献求助10
刚刚
aaa关闭了aaa文献求助
刚刚
1秒前
懒羊羊完成签到,获得积分10
1秒前
Souveb完成签到,获得积分10
1秒前
沉默南露发布了新的文献求助10
2秒前
雨诺完成签到,获得积分10
2秒前
我是老大应助渡月桥采纳,获得10
2秒前
2秒前
2秒前
儒雅不弱发布了新的文献求助10
3秒前
大团长完成签到,获得积分10
3秒前
3秒前
3秒前
lisuye1990完成签到,获得积分10
3秒前
慕青应助邮寄短诗采纳,获得10
3秒前
4秒前
欣慰马里奥完成签到 ,获得积分10
4秒前
脑洞疼应助Xj采纳,获得30
4秒前
sindex完成签到,获得积分10
4秒前
香蕉觅云应助机灵安白采纳,获得10
5秒前
Ava应助wwl采纳,获得10
5秒前
心随风飞完成签到,获得积分10
5秒前
safsafdfasf发布了新的文献求助10
6秒前
传奇3应助wms采纳,获得10
6秒前
言非离完成签到,获得积分10
6秒前
YAYING完成签到 ,获得积分10
7秒前
7秒前
leey发布了新的文献求助10
7秒前
时光里完成签到,获得积分10
7秒前
solar@2030完成签到,获得积分20
7秒前
上官若男应助野原新之助采纳,获得30
8秒前
慢悠的蜗牛完成签到 ,获得积分10
8秒前
前方盎然完成签到,获得积分10
9秒前
nanxi88完成签到,获得积分10
10秒前
10秒前
jiangnan发布了新的文献求助10
10秒前
NexusExplorer应助ooooodai采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665611
求助须知:如何正确求助?哪些是违规求助? 4877669
关于积分的说明 15114824
捐赠科研通 4824856
什么是DOI,文献DOI怎么找? 2582972
邀请新用户注册赠送积分活动 1536984
关于科研通互助平台的介绍 1495418