Evaluating diagnostic content of AI-generated radiology reports of chest X-rays

计算机科学 标准化 任务(项目管理) 隐藏字幕 人工智能 词汇 质量(理念) 自然语言处理 深度学习 放射科 情报检索 医学物理学 机器学习 医学 图像(数学) 语言学 哲学 经济 管理 操作系统 认识论
作者
Zaheer Ud Din Babar,Twan van Laarhoven,Fabio Massimo Zanzotto,Elena Marchiori
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:116: 102075-102075 被引量:16
标识
DOI:10.1016/j.artmed.2021.102075
摘要

Radiology reports are of core importance for the communication between the radiologist and clinician. A computer-aided radiology report system can assist radiologists in this task and reduce variation between reports thus facilitating communication with the medical doctor or clinician. Producing a well structured, clear, and clinically well-focused radiology report is essential for high-quality patient diagnosis and care. Despite recent advances in deep learning for image caption generation, this task remains highly challenging in a medical setting. Research has mainly focused on the design of tailored machine learning methods for this task, while little attention has been devoted to the development of evaluation metrics to assess the quality of AI-generated documents. Conventional quality metrics for natural language processing methods like the popular BLEU score, provide little information about the quality of the diagnostic content of AI-generated radiology reports. In particular, because radiology reports often use standardized sentences, BLEU scores of generated reports can be high while they lack diagnostically important information. We investigate this problem and propose a new measure that quantifies the diagnostic content of AI-generated radiology reports. In addition, we exploit the standardization of reports by generating a sequence of sentences. That is, instead of using a dictionary of words, as current image captioning methods do, we use a dictionary of sentences. The assumption underlying this choice is that radiologists use a well-focused vocabulary of ‘standard’ sentences, which should suffice for composing most reports. As a by-product, a significant training speed-up is achieved compared to models trained on a dictionary of words. Overall, results of our investigation indicate that standard validation metrics for AI-generated documents are weakly correlated with the diagnostic content of the reports. Therefore, these measures should be not used as only validation metrics, and measures evaluating diagnostic content should be preferred in such a medical context.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研究僧完成签到,获得积分10
1秒前
刚果王子完成签到,获得积分10
3秒前
大反应釜完成签到,获得积分10
4秒前
闲人不贤完成签到,获得积分10
4秒前
King强完成签到,获得积分10
4秒前
林巧完成签到 ,获得积分10
4秒前
小孩完成签到 ,获得积分10
5秒前
坚定幻嫣完成签到 ,获得积分10
5秒前
狄剑通发布了新的文献求助10
5秒前
6秒前
孙鹏完成签到,获得积分10
7秒前
7秒前
包容鸭子完成签到,获得积分20
7秒前
DY完成签到,获得积分10
8秒前
相忘于江湖完成签到,获得积分10
8秒前
含蓄越彬完成签到,获得积分10
9秒前
鲤鱼小熊猫完成签到,获得积分10
9秒前
yellow完成签到 ,获得积分10
10秒前
十元完成签到,获得积分10
10秒前
小甜水完成签到,获得积分10
10秒前
Zippon完成签到,获得积分10
10秒前
ee发布了新的文献求助10
11秒前
乘风破浪完成签到 ,获得积分10
11秒前
12秒前
会飞的扁担发布了新的文献求助100
12秒前
再睡十分钟完成签到,获得积分10
13秒前
赘婿应助坚强的严青采纳,获得10
14秒前
米夏完成签到 ,获得积分10
14秒前
耍酷的梦桃完成签到,获得积分10
15秒前
嘻嘻完成签到,获得积分10
15秒前
小鑫鑫1027完成签到,获得积分10
15秒前
万能图书馆应助化工人采纳,获得10
16秒前
17秒前
Hey发布了新的文献求助10
17秒前
18秒前
19秒前
lpx43完成签到,获得积分10
20秒前
李超完成签到,获得积分10
20秒前
altango完成签到,获得积分10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146969
求助须知:如何正确求助?哪些是违规求助? 2798221
关于积分的说明 7827159
捐赠科研通 2454808
什么是DOI,文献DOI怎么找? 1306480
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565