Evaluating diagnostic content of AI-generated radiology reports of chest X-rays

计算机科学 标准化 任务(项目管理) 隐藏字幕 人工智能 词汇 质量(理念) 自然语言处理 深度学习 放射科 情报检索 医学物理学 机器学习 医学 图像(数学) 语言学 哲学 管理 认识论 经济 操作系统
作者
Zaheer Ud Din Babar,Twan van Laarhoven,Fabio Massimo Zanzotto,Elena Marchiori
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:116: 102075-102075 被引量:16
标识
DOI:10.1016/j.artmed.2021.102075
摘要

Radiology reports are of core importance for the communication between the radiologist and clinician. A computer-aided radiology report system can assist radiologists in this task and reduce variation between reports thus facilitating communication with the medical doctor or clinician. Producing a well structured, clear, and clinically well-focused radiology report is essential for high-quality patient diagnosis and care. Despite recent advances in deep learning for image caption generation, this task remains highly challenging in a medical setting. Research has mainly focused on the design of tailored machine learning methods for this task, while little attention has been devoted to the development of evaluation metrics to assess the quality of AI-generated documents. Conventional quality metrics for natural language processing methods like the popular BLEU score, provide little information about the quality of the diagnostic content of AI-generated radiology reports. In particular, because radiology reports often use standardized sentences, BLEU scores of generated reports can be high while they lack diagnostically important information. We investigate this problem and propose a new measure that quantifies the diagnostic content of AI-generated radiology reports. In addition, we exploit the standardization of reports by generating a sequence of sentences. That is, instead of using a dictionary of words, as current image captioning methods do, we use a dictionary of sentences. The assumption underlying this choice is that radiologists use a well-focused vocabulary of ‘standard’ sentences, which should suffice for composing most reports. As a by-product, a significant training speed-up is achieved compared to models trained on a dictionary of words. Overall, results of our investigation indicate that standard validation metrics for AI-generated documents are weakly correlated with the diagnostic content of the reports. Therefore, these measures should be not used as only validation metrics, and measures evaluating diagnostic content should be preferred in such a medical context.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
gaogao发布了新的文献求助10
2秒前
3秒前
ller完成签到,获得积分10
3秒前
颜倾完成签到,获得积分10
3秒前
3秒前
恒星的恒心完成签到 ,获得积分10
4秒前
4秒前
5秒前
bkagyin应助想发nature采纳,获得10
5秒前
虚幻初之完成签到,获得积分10
6秒前
k_1发布了新的文献求助10
6秒前
6秒前
Amazing发布了新的文献求助10
7秒前
胡萝卜发布了新的文献求助10
7秒前
wanci应助高挑的导师采纳,获得10
7秒前
zkk完成签到,获得积分10
8秒前
研友_VZG7GZ应助小H采纳,获得10
8秒前
暴富解忧发布了新的文献求助30
8秒前
小俊完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
黄芪发布了新的文献求助10
10秒前
10秒前
科研通AI2S应助局长采纳,获得10
11秒前
11秒前
7777完成签到,获得积分20
11秒前
小可不怕困难完成签到,获得积分10
11秒前
12秒前
科研通AI6应助k_1采纳,获得10
12秒前
桐桐应助k_1采纳,获得10
12秒前
12秒前
13秒前
13秒前
夏至完成签到 ,获得积分10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578047
求助须知:如何正确求助?哪些是违规求助? 4663043
关于积分的说明 14744355
捐赠科研通 4603721
什么是DOI,文献DOI怎么找? 2526643
邀请新用户注册赠送积分活动 1496203
关于科研通互助平台的介绍 1465657