Evaluating diagnostic content of AI-generated radiology reports of chest X-rays

计算机科学 标准化 任务(项目管理) 隐藏字幕 人工智能 词汇 质量(理念) 自然语言处理 深度学习 放射科 情报检索 医学物理学 机器学习 医学 图像(数学) 语言学 哲学 经济 管理 操作系统 认识论
作者
Zaheer Ud Din Babar,Twan van Laarhoven,Fabio Massimo Zanzotto,Elena Marchiori
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:116: 102075-102075 被引量:16
标识
DOI:10.1016/j.artmed.2021.102075
摘要

Radiology reports are of core importance for the communication between the radiologist and clinician. A computer-aided radiology report system can assist radiologists in this task and reduce variation between reports thus facilitating communication with the medical doctor or clinician. Producing a well structured, clear, and clinically well-focused radiology report is essential for high-quality patient diagnosis and care. Despite recent advances in deep learning for image caption generation, this task remains highly challenging in a medical setting. Research has mainly focused on the design of tailored machine learning methods for this task, while little attention has been devoted to the development of evaluation metrics to assess the quality of AI-generated documents. Conventional quality metrics for natural language processing methods like the popular BLEU score, provide little information about the quality of the diagnostic content of AI-generated radiology reports. In particular, because radiology reports often use standardized sentences, BLEU scores of generated reports can be high while they lack diagnostically important information. We investigate this problem and propose a new measure that quantifies the diagnostic content of AI-generated radiology reports. In addition, we exploit the standardization of reports by generating a sequence of sentences. That is, instead of using a dictionary of words, as current image captioning methods do, we use a dictionary of sentences. The assumption underlying this choice is that radiologists use a well-focused vocabulary of ‘standard’ sentences, which should suffice for composing most reports. As a by-product, a significant training speed-up is achieved compared to models trained on a dictionary of words. Overall, results of our investigation indicate that standard validation metrics for AI-generated documents are weakly correlated with the diagnostic content of the reports. Therefore, these measures should be not used as only validation metrics, and measures evaluating diagnostic content should be preferred in such a medical context.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助jjy采纳,获得10
刚刚
刚刚
郑总完成签到,获得积分10
刚刚
CipherSage应助马尼拉采纳,获得10
刚刚
SCI完成签到 ,获得积分10
1秒前
2秒前
healer发布了新的文献求助10
2秒前
123完成签到,获得积分20
3秒前
李健的小迷弟应助yili采纳,获得10
3秒前
L.完成签到,获得积分10
3秒前
木子发布了新的文献求助10
3秒前
威武诺言发布了新的文献求助10
3秒前
科研通AI5应助孙二二采纳,获得10
3秒前
3秒前
英姑应助rookie_b0采纳,获得10
4秒前
毛慢慢发布了新的文献求助10
4秒前
123完成签到,获得积分10
4秒前
kangkang完成签到,获得积分10
5秒前
丘比特应助东风第一枝采纳,获得10
5秒前
5秒前
丰知然应助normankasimodo采纳,获得10
6秒前
黑森林发布了新的文献求助30
6秒前
hu970发布了新的文献求助10
6秒前
6秒前
俭朴夜雪发布了新的文献求助30
6秒前
林上草应助lzj001983采纳,获得10
6秒前
小白完成签到,获得积分20
6秒前
药疯了完成签到,获得积分20
7秒前
桐桐应助123采纳,获得10
7秒前
风中寄云发布了新的文献求助10
7秒前
buuyoo发布了新的文献求助10
7秒前
zjudxn发布了新的文献求助10
7秒前
春夏爱科研完成签到,获得积分10
8秒前
飞翔的西红柿完成签到,获得积分10
8秒前
xzy完成签到,获得积分10
8秒前
L.发布了新的文献求助20
9秒前
Verdigris完成签到,获得积分10
10秒前
cindy完成签到,获得积分10
10秒前
研友_VZG7GZ应助愉快彩虹采纳,获得10
10秒前
金色热浪完成签到 ,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759