Evaluating diagnostic content of AI-generated radiology reports of chest X-rays

计算机科学 标准化 任务(项目管理) 隐藏字幕 人工智能 词汇 质量(理念) 自然语言处理 深度学习 放射科 情报检索 医学物理学 机器学习 医学 图像(数学) 语言学 哲学 经济 管理 操作系统 认识论
作者
Zaheer Ud Din Babar,Twan van Laarhoven,Fabio Massimo Zanzotto,Elena Marchiori
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:116: 102075-102075 被引量:16
标识
DOI:10.1016/j.artmed.2021.102075
摘要

Radiology reports are of core importance for the communication between the radiologist and clinician. A computer-aided radiology report system can assist radiologists in this task and reduce variation between reports thus facilitating communication with the medical doctor or clinician. Producing a well structured, clear, and clinically well-focused radiology report is essential for high-quality patient diagnosis and care. Despite recent advances in deep learning for image caption generation, this task remains highly challenging in a medical setting. Research has mainly focused on the design of tailored machine learning methods for this task, while little attention has been devoted to the development of evaluation metrics to assess the quality of AI-generated documents. Conventional quality metrics for natural language processing methods like the popular BLEU score, provide little information about the quality of the diagnostic content of AI-generated radiology reports. In particular, because radiology reports often use standardized sentences, BLEU scores of generated reports can be high while they lack diagnostically important information. We investigate this problem and propose a new measure that quantifies the diagnostic content of AI-generated radiology reports. In addition, we exploit the standardization of reports by generating a sequence of sentences. That is, instead of using a dictionary of words, as current image captioning methods do, we use a dictionary of sentences. The assumption underlying this choice is that radiologists use a well-focused vocabulary of ‘standard’ sentences, which should suffice for composing most reports. As a by-product, a significant training speed-up is achieved compared to models trained on a dictionary of words. Overall, results of our investigation indicate that standard validation metrics for AI-generated documents are weakly correlated with the diagnostic content of the reports. Therefore, these measures should be not used as only validation metrics, and measures evaluating diagnostic content should be preferred in such a medical context.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
GUESSSS发布了新的文献求助10
1秒前
1秒前
彭a发布了新的文献求助10
1秒前
2秒前
hhh发布了新的文献求助10
2秒前
2秒前
lu发布了新的文献求助10
3秒前
佳凝完成签到,获得积分20
3秒前
卡卡西应助DTH采纳,获得30
4秒前
4秒前
田様应助默默的无敌采纳,获得30
5秒前
wjx发布了新的文献求助10
5秒前
共享精神应助斯文安筠采纳,获得10
5秒前
美满花生发布了新的文献求助30
5秒前
qing发布了新的文献求助10
6秒前
smottom应助lm18994782585采纳,获得20
6秒前
QZZ发布了新的文献求助10
6秒前
Ran发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
8秒前
8秒前
可爱的函函应助科研大佬采纳,获得10
8秒前
tt发布了新的文献求助10
9秒前
瘦瘦的迎梦完成签到 ,获得积分10
9秒前
10秒前
Xuejin发布了新的文献求助10
11秒前
英俊的铭应助雪白的山雁采纳,获得10
11秒前
v小飞侠101发布了新的文献求助10
12秒前
黄鱼面发布了新的文献求助30
12秒前
小富婆发布了新的文献求助10
12秒前
mostspecial发布了新的文献求助10
12秒前
13秒前
15秒前
佳凝发布了新的文献求助10
15秒前
桐桐应助大大小小采纳,获得30
15秒前
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974943
求助须知:如何正确求助?哪些是违规求助? 3519467
关于积分的说明 11198482
捐赠科研通 3255728
什么是DOI,文献DOI怎么找? 1797904
邀请新用户注册赠送积分活动 877261
科研通“疑难数据库(出版商)”最低求助积分说明 806224