离散小波变换
第二代小波变换
平稳小波变换
小波包分解
吊装方案
谐波小波变换
哈尔小波转换
模式识别(心理学)
小波变换
数学
计算机科学
计算机视觉
人工智能
算法
小波
出处
期刊:Texts in computer science
日期:2019-01-01
卷期号:: 35-44
被引量:67
标识
DOI:10.1007/978-3-030-17989-2_3
摘要
This chapter presents the multi-resolution analysis theory by formally introducing the contemporary wavelet theories. It starts with formulating a wavelet transform as a transform similar to windowed FT but at multiple resolutions or scales. It then uses the simplest wavelet i.e. Haar wavelet to demonstrate step-by-step how both 1D and 2D discrete wavelet transforms (DWT) work. A 2D wavelet decomposition tree is used to help readers understanding 2D DWT. Readers are then demonstrated with a DWT application on image analysis. By finishing this chapter, readers will have a full understanding how DWT works, what types of features a wavelet can capture and how they can be used for image data mining.
科研通智能强力驱动
Strongly Powered by AbleSci AI