Development of nano boron-doped diamond electrodes for environmental applications

电极 循环伏安法 纳米技术 材料科学 钻石 化学工程 电化学 扫描电子显微镜 傅里叶变换红外光谱 化学 分析化学(期刊) 有机化学 复合材料 工程类 物理化学
作者
Rishabh Bansal,Rafael Verduzco,Michael S. Wong,Paul Westerhoff,Sergi Garcia‐Segura
出处
期刊:Journal of Electroanalytical Chemistry [Elsevier]
卷期号:907: 116028-116028 被引量:18
标识
DOI:10.1016/j.jelechem.2022.116028
摘要

Boron doped diamond (BDD) is an outstanding electrode material with unique electrocatalytic properties and excellent stability, relevant to electrochemical advanced oxidation processes and electroanalytical techniques. From an environmental sustainability viewpoint, BDD electrodes are comprised only of earth abundant elements (carbon, boron, oxygen). However, a major drawback is the high manufacturing costs per unit surface area for BDD electrodes when fabricated using chemical vapor deposition or comparable surface deposition processes. BDD nanoparticles can provide an alternative manufacturing process that reduces costs by over 1000-fold while also improving catalytic activity. Herein, we demonstrate that nano-BDD electrodes can be fabricated by depositing BDD nanoparticles on a silicon substrate using a Nafion® ink-casting method. Scanning electron microscopy (SEM), Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR) were used to investigate the electrode structural and morphological properties, which were compared to BDD electrodes manufactured using standard methods. Cyclic voltammetry measurements revealed similar electrochemical properties for both electrodes, with a broad “electrochemical window”, essential for effective production of ∙OH radicals without oxygen generation, providing an energy-efficient approach to degradation of pollutants in water. The electrocatalytic properties of the nano-BDD enabled electrodes were investigated using a [Fe(CN)6]3-/4- redox probe. The sensing properties of as-prepared nano-BDD electrodes was studied using Dopamine.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助果子采纳,获得10
刚刚
77发布了新的文献求助10
1秒前
优秀的夏之完成签到,获得积分10
2秒前
3秒前
许译匀发布了新的文献求助10
4秒前
zhanglinfeng发布了新的文献求助10
5秒前
6秒前
6秒前
蓝兰发布了新的文献求助10
6秒前
曲沉鱼发布了新的文献求助10
8秒前
8秒前
8秒前
orixero应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
拓扑超导相变完成签到 ,获得积分10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
蓝天应助科研通管家采纳,获得10
10秒前
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得30
10秒前
robert3324应助科研通管家采纳,获得10
10秒前
吼吼应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
nuaa_shy应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
10秒前
Hello应助科研通管家采纳,获得10
10秒前
10秒前
蓝天应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
11秒前
robert3324应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679900
求助须知:如何正确求助?哪些是违规求助? 4994585
关于积分的说明 15171123
捐赠科研通 4839670
什么是DOI,文献DOI怎么找? 2593541
邀请新用户注册赠送积分活动 1546594
关于科研通互助平台的介绍 1504721