Development of nano boron-doped diamond electrodes for environmental applications

电极 循环伏安法 纳米技术 材料科学 钻石 化学工程 电化学 扫描电子显微镜 傅里叶变换红外光谱 化学 分析化学(期刊) 有机化学 复合材料 工程类 物理化学
作者
Rishabh Bansal,Rafael Verduzco,Michael S. Wong,Paul Westerhoff,Sergi Garcia‐Segura
出处
期刊:Journal of Electroanalytical Chemistry [Elsevier]
卷期号:907: 116028-116028 被引量:18
标识
DOI:10.1016/j.jelechem.2022.116028
摘要

Boron doped diamond (BDD) is an outstanding electrode material with unique electrocatalytic properties and excellent stability, relevant to electrochemical advanced oxidation processes and electroanalytical techniques. From an environmental sustainability viewpoint, BDD electrodes are comprised only of earth abundant elements (carbon, boron, oxygen). However, a major drawback is the high manufacturing costs per unit surface area for BDD electrodes when fabricated using chemical vapor deposition or comparable surface deposition processes. BDD nanoparticles can provide an alternative manufacturing process that reduces costs by over 1000-fold while also improving catalytic activity. Herein, we demonstrate that nano-BDD electrodes can be fabricated by depositing BDD nanoparticles on a silicon substrate using a Nafion® ink-casting method. Scanning electron microscopy (SEM), Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR) were used to investigate the electrode structural and morphological properties, which were compared to BDD electrodes manufactured using standard methods. Cyclic voltammetry measurements revealed similar electrochemical properties for both electrodes, with a broad “electrochemical window”, essential for effective production of ∙OH radicals without oxygen generation, providing an energy-efficient approach to degradation of pollutants in water. The electrocatalytic properties of the nano-BDD enabled electrodes were investigated using a [Fe(CN)6]3-/4- redox probe. The sensing properties of as-prepared nano-BDD electrodes was studied using Dopamine.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
amberbaby完成签到,获得积分10
刚刚
睡不完的觉完成签到,获得积分10
刚刚
Ss完成签到,获得积分10
1秒前
wwy应助顺心的觅荷采纳,获得10
1秒前
自由天荷完成签到,获得积分10
1秒前
2秒前
风中的万天完成签到,获得积分10
2秒前
失眠千兰关注了科研通微信公众号
3秒前
Akim应助沉静的煎蛋采纳,获得10
3秒前
科目三应助fuyg采纳,获得10
4秒前
4秒前
老实念芹发布了新的文献求助10
4秒前
4秒前
凌梦发布了新的文献求助10
5秒前
5秒前
蓝荆完成签到,获得积分10
5秒前
刘亮亮完成签到,获得积分10
5秒前
Rubyii发布了新的文献求助20
5秒前
深情安青应助研友_8QxN1Z采纳,获得10
5秒前
5秒前
ywhywh50完成签到,获得积分10
6秒前
lyqs215完成签到,获得积分10
6秒前
小白菜完成签到,获得积分10
6秒前
小鱼完成签到 ,获得积分10
6秒前
zzzeeee完成签到,获得积分10
6秒前
wqy完成签到,获得积分10
6秒前
香蕉觅云应助Yel采纳,获得30
7秒前
Benn完成签到,获得积分10
7秒前
aaaar发布了新的文献求助20
7秒前
任性的沅完成签到,获得积分10
7秒前
可口可乐完成签到,获得积分10
7秒前
7秒前
欻欻欻完成签到,获得积分10
7秒前
HE发布了新的文献求助10
8秒前
zcnsdtc1991完成签到,获得积分10
8秒前
SSS发布了新的文献求助30
8秒前
9秒前
晚风完成签到,获得积分10
9秒前
少年应助yike采纳,获得10
9秒前
liuuuuu完成签到 ,获得积分10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699262
求助须知:如何正确求助?哪些是违规求助? 5129994
关于积分的说明 15225198
捐赠科研通 4854268
什么是DOI,文献DOI怎么找? 2604550
邀请新用户注册赠送积分活动 1556014
关于科研通互助平台的介绍 1514297