Active and Semi-Supervised Graph Neural Networks for Graph Classification

计算机科学 图形 人工智能 机器学习 理论计算机科学
作者
Yu Xie,Shengze Lv,Yuhua Qian,Chao Wen,Jiye Liang
出处
期刊:IEEE Transactions on Big Data [IEEE Computer Society]
卷期号:8 (4): 920-932 被引量:28
标识
DOI:10.1109/tbdata.2021.3140205
摘要

Graph classification aims to predict the class labels of graphs and has a wide range of applications in many real-world domains. However, most of existing graph neural networks for graph classification tasks use 90 $\%$ of labeled graphs for training and the remaining 10 $\%$ for testing, which obviously struggle in solving the problem of the scarcity of labeled graphs in real-world graph classification scenarios. And it is arduous to label a large number of graph examples for training because of the difficulty and resource consumption in the tagging process. Motivated by this, we propose a novel active and semi-supervised graph neural network (ASGNN) framework, which endeavors to complete graph classification tasks with a small number of labeled graph examples and available unlabeled graph examples. In our framework, active learning selects high-uncertain and representative graph examples from the test set and add them to the training set after annotation. Semi-supervised learning is utilized to select the high-confidence unlabeled graph examples containing structural information from the test set, and add them to the training set after pseudo labeling. To improve the generalization performance of the graph classification model, multiple GNNs are trained collaboratively for promoting the expressiveness of each other and increasing the reliability of graph classification results. Overall, the ASGNN framework takes fully use of unlabeled graph examples to reinforce graph classification effectively, and can be applied to any existing supervised graph neural networks for graph classification. Experimental results on benchmark graph datasets demonstrate that the proposed framework yields competitive performance on graph classification tasks with only a small number of labeled graph examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
上官若男应助清水涧采纳,获得10
1秒前
2秒前
路灯下的小伙完成签到,获得积分10
2秒前
111发布了新的文献求助10
2秒前
所所应助chenjun7080采纳,获得10
2秒前
3秒前
JL关闭了JL文献求助
3秒前
4秒前
walden发布了新的文献求助10
4秒前
buno应助花花采纳,获得10
4秒前
千帆完成签到 ,获得积分10
4秒前
无花果应助帅气书白采纳,获得10
5秒前
表哥yd完成签到 ,获得积分10
5秒前
6秒前
Arima发布了新的文献求助10
6秒前
violet发布了新的文献求助10
7秒前
LIUYC完成签到,获得积分10
7秒前
科研通AI5应助细腻的易真采纳,获得10
7秒前
7秒前
轻松的老鼠完成签到,获得积分10
8秒前
畅畅儿歌完成签到,获得积分20
8秒前
9秒前
一切顺利发布了新的文献求助10
10秒前
lvxinda完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
WLWLW应助Shonso采纳,获得30
13秒前
贪玩的醉柳完成签到,获得积分10
13秒前
chenjun7080完成签到,获得积分10
13秒前
violet完成签到,获得积分10
13秒前
shabbow完成签到,获得积分10
13秒前
14秒前
14秒前
玉玉完成签到,获得积分20
15秒前
尾随温暖发布了新的文献求助10
16秒前
16秒前
小二郎应助淡定的镜子采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633382
求助须知:如何正确求助?哪些是违规求助? 4029342
关于积分的说明 12467045
捐赠科研通 3715550
什么是DOI,文献DOI怎么找? 2050235
邀请新用户注册赠送积分活动 1081814
科研通“疑难数据库(出版商)”最低求助积分说明 964080