Active and Semi-Supervised Graph Neural Networks for Graph Classification

计算机科学 图形 人工智能 机器学习 理论计算机科学
作者
Yu Xie,Shengze Lv,Yuhua Qian,Chao Wen,Jiye Liang
出处
期刊:IEEE Transactions on Big Data [Institute of Electrical and Electronics Engineers]
卷期号:8 (4): 920-932 被引量:28
标识
DOI:10.1109/tbdata.2021.3140205
摘要

Graph classification aims to predict the class labels of graphs and has a wide range of applications in many real-world domains. However, most of existing graph neural networks for graph classification tasks use 90 $\%$ of labeled graphs for training and the remaining 10 $\%$ for testing, which obviously struggle in solving the problem of the scarcity of labeled graphs in real-world graph classification scenarios. And it is arduous to label a large number of graph examples for training because of the difficulty and resource consumption in the tagging process. Motivated by this, we propose a novel active and semi-supervised graph neural network (ASGNN) framework, which endeavors to complete graph classification tasks with a small number of labeled graph examples and available unlabeled graph examples. In our framework, active learning selects high-uncertain and representative graph examples from the test set and add them to the training set after annotation. Semi-supervised learning is utilized to select the high-confidence unlabeled graph examples containing structural information from the test set, and add them to the training set after pseudo labeling. To improve the generalization performance of the graph classification model, multiple GNNs are trained collaboratively for promoting the expressiveness of each other and increasing the reliability of graph classification results. Overall, the ASGNN framework takes fully use of unlabeled graph examples to reinforce graph classification effectively, and can be applied to any existing supervised graph neural networks for graph classification. Experimental results on benchmark graph datasets demonstrate that the proposed framework yields competitive performance on graph classification tasks with only a small number of labeled graph examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助li采纳,获得10
1秒前
1秒前
qqq完成签到,获得积分20
1秒前
1秒前
Yaon-Xu发布了新的文献求助10
2秒前
3秒前
德鲁大叔发布了新的文献求助10
3秒前
危机的向日葵完成签到 ,获得积分10
3秒前
xiangjun完成签到,获得积分10
3秒前
3秒前
Li应助胡梦祥采纳,获得10
3秒前
dove发布了新的文献求助10
3秒前
4秒前
早日毕业完成签到,获得积分10
4秒前
juaner发布了新的文献求助10
4秒前
潇洒依白关注了科研通微信公众号
5秒前
5秒前
5秒前
qqq发布了新的文献求助10
6秒前
6秒前
醉尘发布了新的文献求助10
7秒前
8秒前
WYR发布了新的文献求助20
9秒前
Narcissus完成签到,获得积分10
10秒前
邱晨凯发布了新的文献求助10
11秒前
科研通AI6应助研友_892kOL采纳,获得10
11秒前
loyal发布了新的文献求助10
11秒前
牙膏616发布了新的文献求助10
11秒前
华仔应助zj3tears采纳,获得10
14秒前
浮游应助xhd2814采纳,获得10
15秒前
老迟到的晓露完成签到,获得积分10
15秒前
哈哈哈发布了新的文献求助10
15秒前
xona完成签到,获得积分10
15秒前
16秒前
乐观紫霜发布了新的文献求助10
18秒前
20秒前
Lucas应助甜甜圈采纳,获得10
20秒前
xuexi完成签到,获得积分10
20秒前
开心果发布了新的文献求助10
20秒前
万能图书馆应助夜行采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312188
求助须知:如何正确求助?哪些是违规求助? 4455976
关于积分的说明 13864983
捐赠科研通 4344392
什么是DOI,文献DOI怎么找? 2385837
邀请新用户注册赠送积分活动 1380209
关于科研通互助平台的介绍 1348565