已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Active and Semi-Supervised Graph Neural Networks for Graph Classification

计算机科学 图形 人工智能 机器学习 理论计算机科学
作者
Yu Xie,Shengze Lv,Yuhua Qian,Chao Wen,Jiye Liang
出处
期刊:IEEE Transactions on Big Data [Institute of Electrical and Electronics Engineers]
卷期号:8 (4): 920-932 被引量:28
标识
DOI:10.1109/tbdata.2021.3140205
摘要

Graph classification aims to predict the class labels of graphs and has a wide range of applications in many real-world domains. However, most of existing graph neural networks for graph classification tasks use 90 $\%$ of labeled graphs for training and the remaining 10 $\%$ for testing, which obviously struggle in solving the problem of the scarcity of labeled graphs in real-world graph classification scenarios. And it is arduous to label a large number of graph examples for training because of the difficulty and resource consumption in the tagging process. Motivated by this, we propose a novel active and semi-supervised graph neural network (ASGNN) framework, which endeavors to complete graph classification tasks with a small number of labeled graph examples and available unlabeled graph examples. In our framework, active learning selects high-uncertain and representative graph examples from the test set and add them to the training set after annotation. Semi-supervised learning is utilized to select the high-confidence unlabeled graph examples containing structural information from the test set, and add them to the training set after pseudo labeling. To improve the generalization performance of the graph classification model, multiple GNNs are trained collaboratively for promoting the expressiveness of each other and increasing the reliability of graph classification results. Overall, the ASGNN framework takes fully use of unlabeled graph examples to reinforce graph classification effectively, and can be applied to any existing supervised graph neural networks for graph classification. Experimental results on benchmark graph datasets demonstrate that the proposed framework yields competitive performance on graph classification tasks with only a small number of labeled graph examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
hhchhcmxhf完成签到,获得积分10
6秒前
7秒前
7秒前
ding应助科研通管家采纳,获得30
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
嗯哼应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
9秒前
兰亭序发布了新的文献求助10
12秒前
悦悦呀完成签到 ,获得积分10
12秒前
脚踏实地呢完成签到 ,获得积分10
19秒前
肉丸发布了新的文献求助250
21秒前
我是老大应助大力日记本采纳,获得10
24秒前
花无双完成签到,获得积分0
28秒前
31秒前
31秒前
31秒前
34秒前
伶俐的以晴完成签到 ,获得积分10
34秒前
35秒前
36秒前
38秒前
38秒前
qbz发布了新的文献求助10
40秒前
杳鸢给杳鸢的求助进行了留言
41秒前
顾矜应助肉丸采纳,获得10
41秒前
42秒前
可爱易文完成签到,获得积分10
43秒前
李健应助乐观的安梦采纳,获得10
44秒前
可爱易文发布了新的文献求助10
47秒前
橘橘橘子皮完成签到 ,获得积分10
47秒前
归玖完成签到 ,获得积分10
48秒前
852应助欢呼妙彤采纳,获得10
50秒前
JamesPei应助里里采纳,获得10
52秒前
Lucas应助archer01采纳,获得10
53秒前
wcy完成签到 ,获得积分10
54秒前
ma发布了新的文献求助10
55秒前
Aray完成签到,获得积分10
56秒前
茜茜完成签到 ,获得积分10
57秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248577
求助须知:如何正确求助?哪些是违规求助? 2892044
关于积分的说明 8269571
捐赠科研通 2560135
什么是DOI,文献DOI怎么找? 1388854
科研通“疑难数据库(出版商)”最低求助积分说明 650918
邀请新用户注册赠送积分活动 627798