Active and Semi-Supervised Graph Neural Networks for Graph Classification

计算机科学 图形 人工智能 机器学习 理论计算机科学
作者
Yu Xie,Shengze Lv,Yuhua Qian,Chao Wen,Jiye Liang
出处
期刊:IEEE Transactions on Big Data [IEEE Computer Society]
卷期号:8 (4): 920-932 被引量:28
标识
DOI:10.1109/tbdata.2021.3140205
摘要

Graph classification aims to predict the class labels of graphs and has a wide range of applications in many real-world domains. However, most of existing graph neural networks for graph classification tasks use 90 $\%$ of labeled graphs for training and the remaining 10 $\%$ for testing, which obviously struggle in solving the problem of the scarcity of labeled graphs in real-world graph classification scenarios. And it is arduous to label a large number of graph examples for training because of the difficulty and resource consumption in the tagging process. Motivated by this, we propose a novel active and semi-supervised graph neural network (ASGNN) framework, which endeavors to complete graph classification tasks with a small number of labeled graph examples and available unlabeled graph examples. In our framework, active learning selects high-uncertain and representative graph examples from the test set and add them to the training set after annotation. Semi-supervised learning is utilized to select the high-confidence unlabeled graph examples containing structural information from the test set, and add them to the training set after pseudo labeling. To improve the generalization performance of the graph classification model, multiple GNNs are trained collaboratively for promoting the expressiveness of each other and increasing the reliability of graph classification results. Overall, the ASGNN framework takes fully use of unlabeled graph examples to reinforce graph classification effectively, and can be applied to any existing supervised graph neural networks for graph classification. Experimental results on benchmark graph datasets demonstrate that the proposed framework yields competitive performance on graph classification tasks with only a small number of labeled graph examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助北辰采纳,获得10
刚刚
1秒前
祁白曼发布了新的文献求助10
1秒前
1秒前
科研通AI5应助lalala采纳,获得10
2秒前
科小白发布了新的文献求助10
3秒前
打打应助舒心梦琪采纳,获得10
3秒前
3秒前
ZSZ完成签到,获得积分10
5秒前
木木发布了新的文献求助10
5秒前
5秒前
薏米lilili应助丸子采纳,获得10
6秒前
7秒前
7秒前
wang完成签到,获得积分10
8秒前
小李发布了新的文献求助10
8秒前
搜集达人应助Rita采纳,获得10
8秒前
北辰发布了新的文献求助10
8秒前
kermitds完成签到 ,获得积分10
9秒前
沐紫心完成签到 ,获得积分10
10秒前
10秒前
12秒前
彭于晏应助文艺的懿采纳,获得10
12秒前
12秒前
Ava应助yaoqiangshi采纳,获得20
13秒前
冰菱发布了新的文献求助10
14秒前
14秒前
祁白曼完成签到,获得积分10
15秒前
15秒前
王子瑞发布了新的文献求助10
17秒前
Jerry发布了新的文献求助10
17秒前
YYYCCCCC完成签到,获得积分10
17秒前
lalala完成签到,获得积分10
18秒前
18秒前
冒泡完成签到,获得积分10
18秒前
玖Nine发布了新的文献求助10
19秒前
19秒前
19秒前
21秒前
情怀应助Teragous采纳,获得10
22秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979515
求助须知:如何正确求助?哪些是违规求助? 3523465
关于积分的说明 11217759
捐赠科研通 3260973
什么是DOI,文献DOI怎么找? 1800315
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807144