Active and Semi-Supervised Graph Neural Networks for Graph Classification

计算机科学 图形 人工智能 机器学习 理论计算机科学
作者
Yu Xie,Shengze Lv,Yuhua Qian,Chao Wen,Jiye Liang
出处
期刊:IEEE Transactions on Big Data [IEEE Computer Society]
卷期号:8 (4): 920-932 被引量:28
标识
DOI:10.1109/tbdata.2021.3140205
摘要

Graph classification aims to predict the class labels of graphs and has a wide range of applications in many real-world domains. However, most of existing graph neural networks for graph classification tasks use 90 $\%$ of labeled graphs for training and the remaining 10 $\%$ for testing, which obviously struggle in solving the problem of the scarcity of labeled graphs in real-world graph classification scenarios. And it is arduous to label a large number of graph examples for training because of the difficulty and resource consumption in the tagging process. Motivated by this, we propose a novel active and semi-supervised graph neural network (ASGNN) framework, which endeavors to complete graph classification tasks with a small number of labeled graph examples and available unlabeled graph examples. In our framework, active learning selects high-uncertain and representative graph examples from the test set and add them to the training set after annotation. Semi-supervised learning is utilized to select the high-confidence unlabeled graph examples containing structural information from the test set, and add them to the training set after pseudo labeling. To improve the generalization performance of the graph classification model, multiple GNNs are trained collaboratively for promoting the expressiveness of each other and increasing the reliability of graph classification results. Overall, the ASGNN framework takes fully use of unlabeled graph examples to reinforce graph classification effectively, and can be applied to any existing supervised graph neural networks for graph classification. Experimental results on benchmark graph datasets demonstrate that the proposed framework yields competitive performance on graph classification tasks with only a small number of labeled graph examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
疯狂的青枫完成签到 ,获得积分10
2秒前
LX发布了新的文献求助10
2秒前
2秒前
向晚完成签到 ,获得积分10
2秒前
猫七发布了新的文献求助10
5秒前
正直静曼完成签到 ,获得积分10
6秒前
kyhappy_2002发布了新的文献求助30
7秒前
英姑应助Devil采纳,获得10
7秒前
小狗黑头完成签到,获得积分10
7秒前
8秒前
浅色凉生发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
铅笔完成签到,获得积分10
11秒前
R先生完成签到,获得积分10
12秒前
12秒前
张贵虎发布了新的文献求助10
12秒前
852应助土豆采纳,获得10
12秒前
13秒前
14秒前
旺旺完成签到,获得积分20
15秒前
wzppp发布了新的文献求助10
15秒前
TUTU完成签到,获得积分10
15秒前
yzy完成签到,获得积分10
17秒前
英俊的铭应助热情的紫菜采纳,获得10
17秒前
孟风尘发布了新的文献求助10
18秒前
Orange应助1234采纳,获得10
18秒前
xr完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
wzppp完成签到,获得积分10
20秒前
feifei完成签到,获得积分10
20秒前
朝阳区李知恩应助风清扬采纳,获得50
20秒前
科研通AI5应助风清扬采纳,获得10
20秒前
mlp发布了新的文献求助20
21秒前
秦善斓完成签到,获得积分10
21秒前
白读书应助ajjyou采纳,获得40
21秒前
21秒前
慕青应助啊啊啊啊采纳,获得10
21秒前
浮游应助可耐的稀采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062428
求助须知:如何正确求助?哪些是违规求助? 4286268
关于积分的说明 13356749
捐赠科研通 4104095
什么是DOI,文献DOI怎么找? 2247300
邀请新用户注册赠送积分活动 1252893
关于科研通互助平台的介绍 1183800