Tongue Image Constitution Recognition Using Improved Googlenet Model

宪法 人工智能 舌头 图像(数学) 模式识别(心理学) 计算机科学 政治学 医学 法学 病理
作者
Cong‐Cong Li,sheng xin Yan,Minghao Liu,Guifa Teng
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4149617
摘要

Traditional Chinese medicine constitution is the foundation and core content of traditional Chinese medicine. It indicates the human body's susceptibility to certain specific diseases and tendency to disease types, as well as being a significant reference value for clinical medicine treatment. Tongue diagnosis is an important tool for assisting in diagnosis and recognition of constitution. Currently, constitution recognition mainly relies on doctors' professional knowledge and questionnaire methods, which takes a long time and has a low accuracy rate. In this paper, we propose a convolutional neural network model named TCR-Googlenet based on the GoogleNet model that is more accurate and effective, and the nine constitution types are recognized and classified on the constructed tongue image dataset by improving the parameters, adding batch normalization, adding attention mechanism and optimizing the structure of Inception. The validation accuracy for recognition and classification on the constructed tongue image dataset can reach 87.4%, and the validation accuracy, loss value, and convergence speed are all significantly improved when compared to the five models of VGG-16, Resnet-50, the original GoogleNet model, mobilenet-v3-large, and mobilenet-v3-small. This paper validates the proposed method experimentally, demonstrating that it is feasible and effective to use the method proposed in our study for constitution recognition by tongue images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
善学以致用应助大炮台采纳,获得10
1秒前
诚c发布了新的文献求助100
1秒前
sxr完成签到,获得积分10
2秒前
2秒前
斯文明杰发布了新的文献求助10
2秒前
2秒前
4秒前
4秒前
4秒前
Ann发布了新的文献求助10
5秒前
陈陈陈完成签到,获得积分10
5秒前
5秒前
6秒前
不舍天真发布了新的文献求助10
6秒前
6秒前
H1发布了新的文献求助10
6秒前
7秒前
完美世界应助飞夜采纳,获得10
7秒前
未来发布了新的文献求助10
7秒前
WWXWWX应助cruise采纳,获得10
7秒前
8秒前
安静大树发布了新的文献求助10
9秒前
9秒前
10秒前
jiajia666发布了新的文献求助10
10秒前
斯文明杰完成签到,获得积分10
12秒前
shiz花生完成签到,获得积分10
12秒前
HJJHJH发布了新的文献求助30
12秒前
大炮台发布了新的文献求助10
12秒前
12秒前
13秒前
张佳浩完成签到,获得积分10
14秒前
我是老大应助爱吃泡芙采纳,获得10
16秒前
Ted完成签到,获得积分10
16秒前
SciGPT应助老陈采纳,获得10
17秒前
英姑应助HJJHJH采纳,获得10
18秒前
18秒前
Jasmine发布了新的文献求助10
18秒前
mei发布了新的文献求助10
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454789
求助须知:如何正确求助?哪些是违规求助? 3049989
关于积分的说明 9020079
捐赠科研通 2738731
什么是DOI,文献DOI怎么找? 1502219
科研通“疑难数据库(出版商)”最低求助积分说明 694453
邀请新用户注册赠送积分活动 693143