A Deep Learning Approach to Mapping Irrigation Using Landsat: IrrMapper U-Net

地理空间分析 计算机科学 遥感 卷积神经网络 灌溉 基本事实 像素 卫星图像 数据挖掘 人工智能 地理 生态学 生物
作者
Thomas Colligan,David Ketchum,Douglas Brinkerhoff,M. P. Maneta
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:9
标识
DOI:10.1109/tgrs.2022.3175635
摘要

Accurate maps of irrigation are essential for understanding and managing water resources. We present a new method of mapping irrigation based on an ensemble of convolutional neural networks that use reflectance information from Landsat imagery to classify irrigated pixels. The methodology does not rely on extensive feature engineering and does not condition the classification with land use information from existing geospatial datasets. The ensemble does not need exhaustive hyperparameter tuning and the analysis pipeline is lightweight enough to be implemented on a personal computer. Furthermore, the proposed methodology provides an estimate of the uncertainty associated with classification. We evaluated our methodology and the resulting irrigation maps using a highly accurate novel spatially-explicit ground truth data set, using county-scale USDA surveys of irrigation extent, and using cadastral surveys. We demonstrate the accuracy of the method by mapping irrigation over the state of Montana from years 2000-2019. We found that our method outperforms other methods that use satellite remote sensing information in terms of overall accuracy and precision. We found that our method agrees better statewide with the USDA National Agricultural Statistics Survey estimates of irrigated area compared to other methods, and has far fewer errors of commission in rainfed agriculture areas. This methodology has the potential to be applied across the entire United States and for the complete Landsat record.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松的冥王星完成签到,获得积分10
刚刚
laura发布了新的文献求助10
1秒前
任然发布了新的文献求助10
1秒前
2秒前
缺粥发布了新的文献求助10
2秒前
clearlove发布了新的文献求助10
3秒前
3秒前
脑洞疼应助1234采纳,获得10
3秒前
4秒前
1234发布了新的文献求助10
4秒前
4秒前
sjb发布了新的文献求助10
4秒前
孝顺的丹寒完成签到,获得积分10
4秒前
5秒前
李健应助成就小懒虫采纳,获得10
5秒前
陈洋_复旦大学完成签到,获得积分10
5秒前
6秒前
6秒前
faded发布了新的文献求助10
6秒前
大个应助滴滴滴采纳,获得10
6秒前
7秒前
YUYUYU应助专一的幻儿采纳,获得10
7秒前
yyyyyuuuuu发布了新的文献求助10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
8秒前
所所应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
juziyaya应助科研通管家采纳,获得30
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得20
9秒前
9秒前
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
乐乐应助满意的柏柳采纳,获得10
9秒前
9秒前
汤姆发布了新的文献求助10
10秒前
moomomomomo发布了新的文献求助10
10秒前
寻道图强应助感动归尘采纳,获得30
10秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A technique for the measurement of attitudes 500
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148683
求助须知:如何正确求助?哪些是违规求助? 2799722
关于积分的说明 7836622
捐赠科研通 2457168
什么是DOI,文献DOI怎么找? 1307779
科研通“疑难数据库(出版商)”最低求助积分说明 628265
版权声明 601663