Machine Learning-Based Fragment Selection Improves the Performance of Qualitative PRM Assays

计算机科学 人工智能 灵敏度(控制系统) 检出限 机器学习 计算生物学 片段(逻辑) 色谱法 化学 生物 算法 电子工程 工程类
作者
Patrick M. Vanderboom,Santosh Renuse,Anthony Maus,Anil K. Madugundu,Jennifer Kemp,Kari M. Gurtner,Ravinder J. Singh,Stefan K. Grebe,Akhilesh Pandey,Surendra Dasari
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:21 (8): 2045-2054 被引量:2
标识
DOI:10.1021/acs.jproteome.2c00156
摘要

Targeted mass spectrometry-based platforms have become a valuable tool for the sensitive and specific detection of protein biomarkers in clinical and research settings. Traditionally, developing a targeted assay for peptide quantification has involved manually preselecting several fragment ions and establishing a limit of detection (LOD) and a lower limit of quantitation (LLOQ) for confident detection of the target. Established thresholds such as LOD and LLOQ, however, inherently sacrifice sensitivity to afford specificity. Here, we demonstrate that machine learning can be applied to qualitative PRM assays to discriminate positive from negative samples more effectively than a traditional approach utilizing conventional methods. To demonstrate the utility of this method, we trained an ensemble machine learning model using 282 SARS-CoV-2 positive and 994 SARS-CoV-2 negative nasopharyngeal swabs (NP swab) analyzed using a targeted PRM method. This model was then validated using an independent set of 200 positive and 150 negative samples and achieved a sensitivity of 92% relative to results obtained by RT-PCR, which was superior to a traditional approach that resulted in 86.5% sensitivity when analyzing the same data. These results demonstrate that machine learning can be applied to qualitative PRM assays and results in superior performance relative to traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ChristineShao完成签到,获得积分10
1秒前
青青子衿发布了新的文献求助10
1秒前
xun发布了新的文献求助20
1秒前
1秒前
贪玩的成危完成签到 ,获得积分10
2秒前
兴起为你发布了新的文献求助10
3秒前
LIN发布了新的文献求助10
4秒前
FashionBoy应助zjq采纳,获得10
5秒前
5秒前
9秒前
9秒前
杨傲多发布了新的文献求助10
10秒前
12秒前
潇洒冰海发布了新的文献求助10
13秒前
无花果应助ri_290采纳,获得10
13秒前
赘婿应助兴起为你采纳,获得10
13秒前
nenoaowu发布了新的文献求助10
14秒前
xjcy应助yanyan采纳,获得10
17秒前
17秒前
柚子想吃橘子完成签到,获得积分10
17秒前
我是老大应助nenoaowu采纳,获得10
19秒前
辉q完成签到,获得积分20
19秒前
星辰大海应助LIN采纳,获得10
19秒前
20秒前
21秒前
21秒前
2810527600完成签到,获得积分10
21秒前
文静的谷菱完成签到,获得积分10
21秒前
buno应助默默采纳,获得10
21秒前
21秒前
杨傲多完成签到,获得积分10
22秒前
wp发布了新的文献求助10
23秒前
CodeCraft应助adai采纳,获得10
25秒前
26秒前
SciGPT应助辉q采纳,获得10
26秒前
27秒前
27秒前
wang完成签到,获得积分10
29秒前
情怀应助divedown采纳,获得10
30秒前
30秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3266784
求助须知:如何正确求助?哪些是违规求助? 2906482
关于积分的说明 8338026
捐赠科研通 2576794
什么是DOI,文献DOI怎么找? 1400728
科研通“疑难数据库(出版商)”最低求助积分说明 654929
邀请新用户注册赠送积分活动 633810