Determination of the Time since Deposition of Blood Traces Utilizing a Liquid Chromatography–Mass Spectrometry-Based Proteomics Approach

化学 色谱法 主成分分析 质谱法 多元统计 刀切重采样 蛋白质组学 样品(材料) 蛋白质组 线性判别分析 层次聚类 液相色谱-质谱法 多元分析 分析化学(期刊) 聚类分析 人工智能 统计 计算机科学 数学 基因 生物化学 估计员
作者
Tom D. Schneider,Bernd Roschitzki,Jonas Grossmann,Thomas Kræmer,Andrea E. Steuer
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (30): 10695-10704 被引量:16
标识
DOI:10.1021/acs.analchem.2c01009
摘要

Knowledge about when a bloodstain was deposited at a crime scene can be of critical value in forensic investigation. A donor of a genetically identified bloodstain could be linked to a suspected time frame and the crime scene itself. Determination of the time since deposition (TsD) has been extensively studied before but has yet to reach maturity. We therefore conducted a proof-of-principle study to study time- and storage-dependent changes of the proteomes of dried blood stains. A bottom-up proteomics approach was employed, and high-resolution liquid-chromatography–mass-spectrometry (HR-LC–MS) and data-independent acquisition (DIA) were used to analyze samples aged over a 2 month period and two different storage conditions. In multivariate analysis, samples showed distinct clustering according to their TsD in both principal component analysis (PCA) and in partial least square discriminant analysis (PLS DA). The storage condition alters sample aging and yields different separation-driving peptides in hierarchical clustering and in TsD marker peptide selection. Certain peptides and amino acid modifications were identified and further assessed for their applicability in assessing passed TsD. A prediction model based on data resampling (Jackknife) was applied, and prediction values for selected peptide ratios were created. Depending on storage conditions and actual sample age, mean prediction performances ranges in between 70 and 130% for the majority of peptides and time points. This places this study as a first in investigating LC–MS based bottom-up proteomics approaches for TsD determination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
九川发布了新的文献求助10
刚刚
Lucas应助无限的隶采纳,获得10
刚刚
胡雅琴完成签到,获得积分10
刚刚
sakurai完成签到,获得积分10
1秒前
清歌扶酒关注了科研通微信公众号
1秒前
二尖瓣后叶举报ww求助涉嫌违规
1秒前
烟花应助轻松笙采纳,获得10
1秒前
沉默凡桃完成签到,获得积分10
2秒前
2秒前
luuuuuing发布了新的文献求助30
2秒前
啦啦啦完成签到,获得积分10
2秒前
小可发布了新的文献求助10
2秒前
3秒前
LKGG完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
周士乐发布了新的文献求助10
4秒前
Sunshine发布了新的文献求助10
4秒前
呼吸之野完成签到,获得积分10
5秒前
害怕的小懒虫完成签到,获得积分10
5秒前
思源应助Nefelibata采纳,获得10
6秒前
妮儿发布了新的文献求助10
6秒前
BareBear应助rosa采纳,获得10
6秒前
沉默凡桃发布了新的文献求助10
7秒前
Orange应助9℃采纳,获得10
7秒前
7秒前
一只橘子完成签到 ,获得积分10
7秒前
8秒前
韭黄发布了新的文献求助10
8秒前
西瓜发布了新的文献求助10
8秒前
Ll发布了新的文献求助10
8秒前
8秒前
wcy关注了科研通微信公众号
8秒前
9秒前
9秒前
CipherSage应助爱喝冰可乐采纳,获得10
10秒前
10秒前
bdvdsrwteges完成签到,获得积分10
10秒前
鱼雷完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759