Determination of the Time since Deposition of Blood Traces Utilizing a Liquid Chromatography–Mass Spectrometry-Based Proteomics Approach

化学 色谱法 主成分分析 质谱法 多元统计 刀切重采样 蛋白质组学 样品(材料) 蛋白质组 线性判别分析 层次聚类 液相色谱-质谱法 多元分析 分析化学(期刊) 聚类分析 人工智能 统计 计算机科学 数学 基因 生物化学 估计员
作者
Tom D. Schneider,Bernd Roschitzki,Jonas Grossmann,Thomas Kræmer,Andrea E. Steuer
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (30): 10695-10704 被引量:16
标识
DOI:10.1021/acs.analchem.2c01009
摘要

Knowledge about when a bloodstain was deposited at a crime scene can be of critical value in forensic investigation. A donor of a genetically identified bloodstain could be linked to a suspected time frame and the crime scene itself. Determination of the time since deposition (TsD) has been extensively studied before but has yet to reach maturity. We therefore conducted a proof-of-principle study to study time- and storage-dependent changes of the proteomes of dried blood stains. A bottom-up proteomics approach was employed, and high-resolution liquid-chromatography–mass-spectrometry (HR-LC–MS) and data-independent acquisition (DIA) were used to analyze samples aged over a 2 month period and two different storage conditions. In multivariate analysis, samples showed distinct clustering according to their TsD in both principal component analysis (PCA) and in partial least square discriminant analysis (PLS DA). The storage condition alters sample aging and yields different separation-driving peptides in hierarchical clustering and in TsD marker peptide selection. Certain peptides and amino acid modifications were identified and further assessed for their applicability in assessing passed TsD. A prediction model based on data resampling (Jackknife) was applied, and prediction values for selected peptide ratios were created. Depending on storage conditions and actual sample age, mean prediction performances ranges in between 70 and 130% for the majority of peptides and time points. This places this study as a first in investigating LC–MS based bottom-up proteomics approaches for TsD determination.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
薛定谔的猫完成签到,获得积分10
刚刚
十一月的阴天完成签到,获得积分10
刚刚
刚刚
彭于晏应助xh采纳,获得10
刚刚
小梅超顺利完成签到 ,获得积分10
1秒前
yuliuism应助Doris采纳,获得20
1秒前
一一完成签到,获得积分10
1秒前
顺心的半兰完成签到 ,获得积分10
2秒前
Orange应助w2503采纳,获得10
3秒前
流星噬月发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
善学以致用应助123采纳,获得10
4秒前
夸父完成签到,获得积分10
6秒前
mu完成签到,获得积分10
6秒前
小小酥发布了新的文献求助10
6秒前
7秒前
顺利的夜梦完成签到,获得积分10
8秒前
8秒前
8秒前
wanci应助ZeSheng采纳,获得10
11秒前
思源应助流星噬月采纳,获得10
11秒前
zzzxxx发布了新的文献求助10
12秒前
梨花完成签到,获得积分10
12秒前
bulabulabu完成签到,获得积分10
12秒前
zzz发布了新的文献求助10
12秒前
科研通AI2S应助孙朱珠采纳,获得10
13秒前
是盐的学术号吖完成签到 ,获得积分10
13秒前
小一完成签到,获得积分20
13秒前
脑洞疼应助xlx采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
谷歌狗发布了新的文献求助10
15秒前
zhu完成签到 ,获得积分10
16秒前
科研通AI2S应助yishufanhua采纳,获得10
16秒前
我是老大应助谨慎的沉鱼采纳,获得10
17秒前
酷波er应助小小酥采纳,获得10
17秒前
20秒前
20秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Lectures in probability theory and mathematical statistics - 3rd Edition 500
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597169
求助须知:如何正确求助?哪些是违规求助? 4682435
关于积分的说明 14826266
捐赠科研通 4659721
什么是DOI,文献DOI怎么找? 2536464
邀请新用户注册赠送积分活动 1504138
关于科研通互助平台的介绍 1470139