Microwave-Induced Deep Catalytic Oxidation of NO Using Molecular-Sieve-Supported Oxygen-Vacancy-Enriched Fe–Mn Bimetal Oxides

双金属 化学 催化作用 无机化学 微波食品加热 分子筛 氧气 空位缺陷 材料科学 化学工程 物理化学 有机化学 结晶学 量子力学 物理 工程类
作者
Bo Yuan,Z. Qian,Xiaojie Yang,Mengchao Luo,Xiaohe Feng,Le Fu,Weijie Yang,Lijuan Yang,Jinghong Zhang,Yi Zhao,Runlong Hao
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:56 (14): 10423-10432 被引量:17
标识
DOI:10.1021/acs.est.2c02851
摘要

A novel microwave (MW) catalytic oxidation denitrification method was developed, which can deeply oxidize NO into nitrate/nitrite with little NO2 yield. A molecular-sieve-supported oxygen-vacancy-enriched Fe2O3–MnO2 catalyst (Ov–Fe–Mn@MOS) was fabricated. Physicochemical properties of the catalyst were revealed by various characterization methods. MW irradiation was superior to the conventional heating method in NO oxidation (90.5 vs 70.6%), and MW empowered the catalyst with excellent low-temperature activity (100–200 °C) and good resistance to H2O and SO2. Ion chromatography analysis demonstrated that the amount of nitrate/nitrite accounted for over 90.0% of the N products, but the main product gradually varied from nitrate to nitrite as the reaction proceeded because of the switching of the main reaction path of NO removal. Mechanism analyses clarified that NO oxidation was a non-radical catalytic reaction: (i) the chemisorbed NO on ≡Mn(IV) reacted with O2* to produce nitrate and (ii) the excited NO* due to MW irradiation reacted with the active O* generated from Ov···O2 to form nitrite. Density functional theory calculations combined with electron paramagnetic resonance tests revealed the promotional effects of Fe2O3 in (i) boosting the Ov's quantity; (ii) facilitating O2 adsorption; (iii) increasing the nitrite formation; and (iv) alleviating the suppression of SO2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
敏感的咖啡豆完成签到 ,获得积分10
刚刚
1秒前
1秒前
小Q啊啾完成签到,获得积分10
2秒前
三木足球完成签到,获得积分10
2秒前
3秒前
大白鹅完成签到,获得积分20
4秒前
迅速初柳发布了新的文献求助10
4秒前
5秒前
Lucas应助爱听歌初曼采纳,获得10
6秒前
淡然平蓝完成签到 ,获得积分10
7秒前
酷波er应助科研通管家采纳,获得30
8秒前
传奇3应助科研通管家采纳,获得20
9秒前
乐观小之应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得30
9秒前
9秒前
Ava应助科研通管家采纳,获得30
9秒前
乐观小之应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
9秒前
reirei应助迅速初柳采纳,获得10
10秒前
勤恳的依珊完成签到,获得积分10
10秒前
LCM666完成签到,获得积分10
11秒前
13秒前
14秒前
14秒前
迟迟发布了新的文献求助10
14秒前
17秒前
如影随形完成签到 ,获得积分10
17秒前
18秒前
19秒前
大个应助鄂惜霜采纳,获得10
20秒前
20秒前
隐形曼青应助大白鹅采纳,获得10
20秒前
xbo完成签到,获得积分10
20秒前
junjun完成签到,获得积分10
21秒前
悦耳半梦发布了新的文献求助30
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969884
求助须知:如何正确求助?哪些是违规求助? 3514604
关于积分的说明 11174901
捐赠科研通 3249928
什么是DOI,文献DOI怎么找? 1795149
邀请新用户注册赠送积分活动 875599
科研通“疑难数据库(出版商)”最低求助积分说明 804891