Wnt信号通路
炎症
信号转导
细胞生物学
脂多糖
化学
生物
药理学
免疫学
作者
Jiaqi Fan,Fang Jia,Yang Liu,Xuezhang Zhou
出处
期刊:PLOS ONE
[Public Library of Science]
日期:2022-07-25
卷期号:17 (7): e0271598-e0271598
被引量:8
标识
DOI:10.1371/journal.pone.0271598
摘要
The Wnt/β-catenin signaling regulates cell renewal and repair and is closely associated with inflammation. Astragalus polysaccharides (APS) and astragaloside IV (AS-IV), which are the main active substances extracted from Radix Astragali , protect cells by regulating Wnt signaling in cells, exerting antiinflammatory, antioxidant, and antistress effects. However, the mechanisms by which APS and AS-IV interact with Wnt signaling to achieve their therapeutic effects in bovine mammary epithelial cells (BMECs) are not understood. In this study, we used lipopolysaccharide (LPS)-stimulated BMECs as an in vitro model of inflammation to investigate the effects of APS and AS-IV on Wnt signaling in inflamed BMECs. Drug concentrations were screened using the CCK-8 method, the effect on protein expression was analyzed using immunoblotting, the effect on inflammatory factors using enzyme-linked immunosorbent assay, and the effect on oxidative factors using enzyme labeling and flow cytometry. LPS activated the expression of inflammatory and oxidative factors in cells and inhibited Wnt/β-catenin signaling. APS and AS-IV antagonized the inhibitory effect of LPS, protecting BMECs. They inhibited the expression of the IL-6, IL-8, and TNF-α inflammatory factors, and that of the MDA oxidative factor, and activated Wnt signaling in LPS-stimulated BMECs. Silencing of β-catenin abolished the protective effect of APS and AS-IV against LPS-stimulated BMECs. Thus, APS and AS-IV mediate protective effects in inflammatory BMECs model through activation of the Wnt signaling pathway. Wnt signaling pathway is one of the targets of the inhibitory effects of APS and AS-IV on inflammation.
科研通智能强力驱动
Strongly Powered by AbleSci AI