已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Use data augmentation for a deep learning classification model with chest X-ray clinical imaging featuring coal workers' pneumoconiosis

医学 尘肺病 放射科 医学物理学 重症监护医学 病理
作者
Hantian Dong,Biaokai Zhu,Xinri Zhang,Xiaomei Kong
出处
期刊:BMC Pulmonary Medicine [BioMed Central]
卷期号:22 (1) 被引量:21
标识
DOI:10.1186/s12890-022-02068-x
摘要

Abstract Purpose This paper aims to develop a successful deep learning model with data augmentation technique to discover the clinical uniqueness of chest X-ray imaging features of coal workers' pneumoconiosis (CWP). Patients and methods We enrolled 149 CWP patients and 68 dust-exposure workers for a prospective cohort observational study between August 2021 and December 2021 at First Hospital of Shanxi Medical University. Two hundred seventeen chest X-ray images were collected for this study, obtaining reliable diagnostic results through the radiologists' team, and confirming clinical imaging features. We segmented regions of interest with diagnosis reports, then classified them into three categories. To identify these clinical features, we developed a deep learning model (ShuffleNet V2-ECA Net) with data augmentation through performances of different deep learning models by assessment with Receiver Operation Characteristics (ROC) curve and area under the curve (AUC), accuracy (ACC), and Loss curves. Results We selected the ShuffleNet V2-ECA Net as the optimal model. The average AUC of this model was 0.98, and all classifications of clinical imaging features had an AUC above 0.95. Conclusion We performed a study on a small dataset to classify the chest X-ray clinical imaging features of pneumoconiosis using a deep learning technique. A deep learning model of ShuffleNet V2 and ECA-Net was successfully constructed using data augmentation, which achieved an average accuracy of 98%. This method uncovered the uniqueness of the chest X-ray imaging features of CWP, thus supplying additional reference material for clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左左完成签到 ,获得积分10
刚刚
机灵哈密瓜完成签到,获得积分10
刚刚
酷酷涫完成签到 ,获得积分0
1秒前
Efference发布了新的文献求助60
2秒前
udbjn123发布了新的文献求助10
4秒前
栀盎完成签到,获得积分10
6秒前
7秒前
7秒前
栗栗栗知完成签到,获得积分10
9秒前
Jeffery完成签到,获得积分10
10秒前
13秒前
14秒前
SYLH应助水门采纳,获得10
14秒前
cdercder应助水门采纳,获得10
14秒前
科研通AI2S应助水门采纳,获得10
14秒前
SYLH应助水门采纳,获得10
14秒前
小墨应助水门采纳,获得10
14秒前
JiangY完成签到,获得积分10
18秒前
隐形的雁完成签到,获得积分10
18秒前
FL完成签到 ,获得积分10
20秒前
虞雪儿儿完成签到 ,获得积分10
24秒前
eee7y完成签到,获得积分20
24秒前
wisher完成签到 ,获得积分10
24秒前
25秒前
xingxing完成签到 ,获得积分10
26秒前
宣灵薇完成签到,获得积分10
29秒前
Lychee完成签到 ,获得积分10
29秒前
eee7y发布了新的文献求助30
30秒前
uranus完成签到,获得积分10
31秒前
34秒前
wook完成签到,获得积分10
35秒前
可爱的函函应助九九采纳,获得10
36秒前
36秒前
Mera完成签到,获得积分10
37秒前
xiemeili完成签到 ,获得积分10
37秒前
科研通AI5应助辞镜采纳,获得10
38秒前
研友_VZG7GZ应助Efference采纳,获得30
39秒前
39秒前
Mera发布了新的文献求助10
39秒前
张婧媛发布了新的文献求助10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Avian Immunology 3rd Edition - December 5, 2021 800
Izeltabart tapatansine - AdisInsight 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3773566
求助须知:如何正确求助?哪些是违规求助? 3319076
关于积分的说明 10192955
捐赠科研通 3033658
什么是DOI,文献DOI怎么找? 1664611
邀请新用户注册赠送积分活动 796247
科研通“疑难数据库(出版商)”最低求助积分说明 757374