亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Uncertainty Preferences in Robust Mixed-Integer Linear Optimization with Endogenous Uncertainty

后悔 稳健优化 敏感性分析 可预测性 稳健性(进化) 数学优化 不确定度分析 决策者 偏爱 计算机科学 集合(抽象数据类型) 运筹学 数学 统计 机器学习 基因 生物化学 模拟 化学 程序设计语言
作者
Immanuel M. Bomze,Markus Gabl
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2011.14875
摘要

In robust optimization one seeks to make a decision under uncertainty, where the goal is to find the solution with the best worst-case performance. The set of possible realizations of the uncertain data is described by a so-called uncertainty set. In many scenarios, a decision maker may influence the uncertainty regime she is facing, for example, by investing in market research, or in machines which work with higher precision. Recently, this situation was addressed in the literature by introducing decision dependent uncertainty sets (endogenous uncertainty), i.e., uncertainty sets whose structure depends on (typically discrete) decision variables. In this way, one can model the trade-off between reducing the cost of robustness versus the cost of the investment necessary for influencing the uncertainty. However, there is another trade-off to be made here. With different uncertainty regimes, not only do the worst-case optimal solutions vary, but also other aspects of that solutions such as max-regret, best-case performance or predictability of the performance. A decision maker may still be interested in having a performance guarantee, but at the same time be willing to forgo superior worst-case performance if those other aspects can be enhanced by switching to a suitable uncertainty regime. We introduce the notion of uncertainty preference in order to capture such stances. We present three ways to formalize uncertainty preferences and study the resulting mathematical models. The goal is to have reformulations/approximations of these models which can be solved with standard methods. The workhorse is mixed-integer linear and conic optimization. We apply our framework to the uncertain shortest path problem and conduct numerical experiments for the resulting models. We can demonstrate that our models can be handled very well by standard mixed-integer linear solvers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助淡定友有采纳,获得10
1秒前
3秒前
阿哈发布了新的文献求助10
9秒前
peili完成签到,获得积分0
15秒前
17秒前
24秒前
tonga发布了新的文献求助10
24秒前
andrele应助科研通管家采纳,获得10
26秒前
30秒前
33秒前
Dopamine发布了新的文献求助10
40秒前
45秒前
旧城以西发布了新的文献求助10
45秒前
49秒前
Dopamine完成签到,获得积分10
53秒前
childe发布了新的文献求助10
54秒前
1分钟前
1分钟前
1分钟前
1分钟前
tonga发布了新的文献求助10
1分钟前
情怀应助旧城以西采纳,获得10
1分钟前
虚幻雁荷完成签到 ,获得积分10
1分钟前
淡定友有发布了新的文献求助10
1分钟前
1分钟前
MJMarker完成签到,获得积分10
1分钟前
我是老大应助淡定友有采纳,获得10
1分钟前
1分钟前
三幅画发布了新的文献求助10
1分钟前
想个名字完成签到,获得积分10
1分钟前
1分钟前
1分钟前
烟花应助帅气绮露采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
传奇3应助缓慢的紫伊采纳,获得10
2分钟前
MJMarker发布了新的文献求助10
2分钟前
2分钟前
tonga发布了新的文献求助10
2分钟前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434779
求助须知:如何正确求助?哪些是违规求助? 3032083
关于积分的说明 8944240
捐赠科研通 2720079
什么是DOI,文献DOI怎么找? 1492084
科研通“疑难数据库(出版商)”最低求助积分说明 689687
邀请新用户注册赠送积分活动 685839