LFANet: Lightweight feature attention network for abnormal cell segmentation in cervical cytology images

计算机科学 人工智能 分割 特征(语言学) 特征提取 模式识别(心理学) 过程(计算) 编码器 深度学习 语言学 哲学 操作系统
作者
Yanli Zhao,Chong Fu,Sen Xu,Lin Cao,Hongfeng Ma
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:145: 105500-105500 被引量:33
标识
DOI:10.1016/j.compbiomed.2022.105500
摘要

With the widely applied computer-aided diagnosis techniques in cervical cancer screening, cell segmentation has become a necessary step to determine the progression of cervical cancer. Traditional manual methods alleviate the dilemma caused by the shortage of medical resources to a certain extent. Unfortunately, with their low segmentation accuracy for abnormal cells, the complex process cannot realize an automatic diagnosis. In addition, various methods on deep learning can automatically extract image features with high accuracy and small error, making artificial intelligence increasingly popular in computer-aided diagnosis. However, they are not suitable for clinical practice because those complicated models would result in more redundant parameters from networks. To address the above problems, a lightweight feature attention network (LFANet), extracting differentially abundant feature information of objects with various resolutions, is proposed in this study. The model can accurately segment both the nucleus and cytoplasm regions in cervical images. Specifically, a lightweight feature extraction module is designed as an encoder to extract abundant features of input images, combining with depth-wise separable convolution, residual connection and attention mechanism. Besides, the feature layer attention module is added to precisely recover pixel location, which employs the global high-level information as a guide for the low-level features, capturing dependencies of channel features. Finally, our LFANet model is evaluated on all four independent datasets. The experimental results demonstrate that compared with other advanced methods, our proposed network achieves state-of-the-art performance with a low computational complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小云杉应助CC采纳,获得10
2秒前
2秒前
3秒前
高挑的孤云完成签到,获得积分20
3秒前
jiabaoyu发布了新的文献求助20
4秒前
4秒前
郝老头完成签到,获得积分10
4秒前
科目三应助冷酷新柔采纳,获得10
5秒前
活力的彩虹完成签到 ,获得积分10
5秒前
YY发布了新的文献求助10
5秒前
Brandy完成签到,获得积分10
6秒前
Orange应助槿炀采纳,获得10
6秒前
6秒前
sxy发布了新的文献求助10
6秒前
酷波er应助Micale采纳,获得10
6秒前
living笑白发布了新的文献求助10
6秒前
田様应助yangyl采纳,获得10
7秒前
7秒前
7秒前
力量发布了新的文献求助10
8秒前
Jae完成签到 ,获得积分10
8秒前
自然的诗翠完成签到,获得积分10
8秒前
llll完成签到,获得积分10
8秒前
正直的松鼠完成签到 ,获得积分10
8秒前
8秒前
wanci应助无辜的星月采纳,获得10
8秒前
8秒前
9秒前
星河完成签到,获得积分10
9秒前
10秒前
10秒前
白皮憨憨完成签到,获得积分10
10秒前
11秒前
11秒前
槿炀完成签到,获得积分20
12秒前
12秒前
深情安青应助力量采纳,获得10
12秒前
学术乞丐发布了新的文献求助10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016711
求助须知:如何正确求助?哪些是违规求助? 3556869
关于积分的说明 11322988
捐赠科研通 3289588
什么是DOI,文献DOI怎么找? 1812514
邀请新用户注册赠送积分活动 888100
科研通“疑难数据库(出版商)”最低求助积分说明 812121