LFANet: Lightweight feature attention network for abnormal cell segmentation in cervical cytology images

计算机科学 人工智能 分割 特征(语言学) 特征提取 模式识别(心理学) 过程(计算) 编码器 深度学习 语言学 哲学 操作系统
作者
Yanli Zhao,Chong Fu,Sen Xu,Lin Cao,Hongfeng Ma
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:145: 105500-105500 被引量:22
标识
DOI:10.1016/j.compbiomed.2022.105500
摘要

With the widely applied computer-aided diagnosis techniques in cervical cancer screening, cell segmentation has become a necessary step to determine the progression of cervical cancer. Traditional manual methods alleviate the dilemma caused by the shortage of medical resources to a certain extent. Unfortunately, with their low segmentation accuracy for abnormal cells, the complex process cannot realize an automatic diagnosis. In addition, various methods on deep learning can automatically extract image features with high accuracy and small error, making artificial intelligence increasingly popular in computer-aided diagnosis. However, they are not suitable for clinical practice because those complicated models would result in more redundant parameters from networks. To address the above problems, a lightweight feature attention network (LFANet), extracting differentially abundant feature information of objects with various resolutions, is proposed in this study. The model can accurately segment both the nucleus and cytoplasm regions in cervical images. Specifically, a lightweight feature extraction module is designed as an encoder to extract abundant features of input images, combining with depth-wise separable convolution, residual connection and attention mechanism. Besides, the feature layer attention module is added to precisely recover pixel location, which employs the global high-level information as a guide for the low-level features, capturing dependencies of channel features. Finally, our LFANet model is evaluated on all four independent datasets. The experimental results demonstrate that compared with other advanced methods, our proposed network achieves state-of-the-art performance with a low computational complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃猫的鱼完成签到,获得积分10
1秒前
1秒前
Maker完成签到,获得积分20
2秒前
dandelion发布了新的文献求助10
2秒前
Hello应助liuzengzhang666采纳,获得10
2秒前
凌七发布了新的文献求助10
2秒前
蓑衣客完成签到,获得积分10
3秒前
无花果应助万里晴空分泌采纳,获得10
4秒前
王二完成签到,获得积分10
4秒前
Hello应助程程程采纳,获得10
4秒前
wen完成签到,获得积分10
5秒前
脑洞疼应助海绵宝宝采纳,获得10
7秒前
YUJIEYA完成签到 ,获得积分10
7秒前
鳗鱼老师发布了新的文献求助10
8秒前
10秒前
11秒前
红叶应助liuzengzhang666采纳,获得10
11秒前
11秒前
Ava应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
薰硝壤应助科研通管家采纳,获得20
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
13秒前
情怀应助科研通管家采纳,获得30
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
俭朴静竹应助科研通管家采纳,获得10
13秒前
paparazzi221应助科研通管家采纳,获得50
13秒前
小马甲应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
14秒前
万里晴空分泌完成签到,获得积分10
14秒前
桐桐应助潇洒的如蓉采纳,获得10
15秒前
天天快乐应助11采纳,获得10
15秒前
16秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3110296
求助须知:如何正确求助?哪些是违规求助? 2760795
关于积分的说明 7661903
捐赠科研通 2415502
什么是DOI,文献DOI怎么找? 1281924
科研通“疑难数据库(出版商)”最低求助积分说明 618824
版权声明 599472