LFANet: Lightweight feature attention network for abnormal cell segmentation in cervical cytology images

计算机科学 人工智能 分割 特征(语言学) 特征提取 模式识别(心理学) 过程(计算) 编码器 深度学习 语言学 哲学 操作系统
作者
Yanli Zhao,Chong Fu,Sen Xu,Lin Cao,Hongfeng Ma
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:145: 105500-105500 被引量:22
标识
DOI:10.1016/j.compbiomed.2022.105500
摘要

With the widely applied computer-aided diagnosis techniques in cervical cancer screening, cell segmentation has become a necessary step to determine the progression of cervical cancer. Traditional manual methods alleviate the dilemma caused by the shortage of medical resources to a certain extent. Unfortunately, with their low segmentation accuracy for abnormal cells, the complex process cannot realize an automatic diagnosis. In addition, various methods on deep learning can automatically extract image features with high accuracy and small error, making artificial intelligence increasingly popular in computer-aided diagnosis. However, they are not suitable for clinical practice because those complicated models would result in more redundant parameters from networks. To address the above problems, a lightweight feature attention network (LFANet), extracting differentially abundant feature information of objects with various resolutions, is proposed in this study. The model can accurately segment both the nucleus and cytoplasm regions in cervical images. Specifically, a lightweight feature extraction module is designed as an encoder to extract abundant features of input images, combining with depth-wise separable convolution, residual connection and attention mechanism. Besides, the feature layer attention module is added to precisely recover pixel location, which employs the global high-level information as a guide for the low-level features, capturing dependencies of channel features. Finally, our LFANet model is evaluated on all four independent datasets. The experimental results demonstrate that compared with other advanced methods, our proposed network achieves state-of-the-art performance with a low computational complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shitzu完成签到 ,获得积分10
刚刚
choco发布了新的文献求助10
2秒前
3秒前
李健的小迷弟应助sun采纳,获得10
3秒前
Jzhang应助liyuchen采纳,获得10
3秒前
魏伯安发布了新的文献求助30
3秒前
jjjjjj发布了新的文献求助30
5秒前
6秒前
伯赏诗霜发布了新的文献求助10
6秒前
糟糕的鹏飞完成签到 ,获得积分10
7秒前
7秒前
欢呼凡旋完成签到,获得积分10
8秒前
韩邹光完成签到,获得积分10
10秒前
xg发布了新的文献求助10
10秒前
11秒前
dktrrrr完成签到,获得积分10
11秒前
季生完成签到,获得积分10
14秒前
徐徐完成签到,获得积分10
14秒前
15秒前
15秒前
haku完成签到,获得积分10
17秒前
可爱的函函应助laodie采纳,获得10
19秒前
Singularity应助忆楠采纳,获得10
20秒前
21秒前
请叫我风吹麦浪应助PengHu采纳,获得30
22秒前
jjjjjj完成签到,获得积分10
22秒前
凝子老师发布了新的文献求助10
24秒前
24秒前
橙子fy16_发布了新的文献求助10
26秒前
cookie完成签到,获得积分10
26秒前
柒柒的小熊完成签到,获得积分10
27秒前
27秒前
Hello应助萌之痴痴采纳,获得10
28秒前
hahaer完成签到,获得积分10
30秒前
领导范儿应助失眠虔纹采纳,获得10
31秒前
32秒前
Owen应助凝子老师采纳,获得10
35秒前
35秒前
南宫炽滔完成签到 ,获得积分10
37秒前
37秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849