已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

LFANet: Lightweight feature attention network for abnormal cell segmentation in cervical cytology images

计算机科学 人工智能 分割 特征(语言学) 特征提取 模式识别(心理学) 过程(计算) 编码器 深度学习 语言学 哲学 操作系统
作者
Yanli Zhao,Chong Fu,Sen Xu,Lin Cao,Hongfeng Ma
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:145: 105500-105500 被引量:34
标识
DOI:10.1016/j.compbiomed.2022.105500
摘要

With the widely applied computer-aided diagnosis techniques in cervical cancer screening, cell segmentation has become a necessary step to determine the progression of cervical cancer. Traditional manual methods alleviate the dilemma caused by the shortage of medical resources to a certain extent. Unfortunately, with their low segmentation accuracy for abnormal cells, the complex process cannot realize an automatic diagnosis. In addition, various methods on deep learning can automatically extract image features with high accuracy and small error, making artificial intelligence increasingly popular in computer-aided diagnosis. However, they are not suitable for clinical practice because those complicated models would result in more redundant parameters from networks. To address the above problems, a lightweight feature attention network (LFANet), extracting differentially abundant feature information of objects with various resolutions, is proposed in this study. The model can accurately segment both the nucleus and cytoplasm regions in cervical images. Specifically, a lightweight feature extraction module is designed as an encoder to extract abundant features of input images, combining with depth-wise separable convolution, residual connection and attention mechanism. Besides, the feature layer attention module is added to precisely recover pixel location, which employs the global high-level information as a guide for the low-level features, capturing dependencies of channel features. Finally, our LFANet model is evaluated on all four independent datasets. The experimental results demonstrate that compared with other advanced methods, our proposed network achieves state-of-the-art performance with a low computational complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxx完成签到 ,获得积分10
2秒前
NiuNiu完成签到,获得积分10
3秒前
莫骐榕完成签到,获得积分10
4秒前
标致断缘完成签到 ,获得积分10
8秒前
chengxue完成签到,获得积分10
9秒前
雨rain完成签到 ,获得积分10
10秒前
13秒前
13秒前
13秒前
14秒前
玖玖完成签到,获得积分10
17秒前
18秒前
18秒前
萧湘完成签到,获得积分10
18秒前
瑶啊瑶完成签到,获得积分10
20秒前
20秒前
lxwwwxl完成签到,获得积分10
22秒前
22秒前
自信人生二百年完成签到,获得积分10
23秒前
24秒前
lxwwwxl发布了新的文献求助10
24秒前
甜美的秋尽完成签到,获得积分10
28秒前
燕绥发布了新的文献求助10
29秒前
29秒前
倪妮发布了新的文献求助10
30秒前
倪妮发布了新的文献求助30
30秒前
Lyw完成签到 ,获得积分10
31秒前
拉扣发布了新的文献求助10
34秒前
倪妮发布了新的文献求助30
35秒前
Zoom应助科研通管家采纳,获得30
39秒前
香蕉觅云应助科研通管家采纳,获得30
40秒前
英姑应助科研通管家采纳,获得10
40秒前
共享精神应助科研通管家采纳,获得10
40秒前
在水一方应助科研通管家采纳,获得10
40秒前
mtt应助科研通管家采纳,获得10
40秒前
倪妮发布了新的文献求助30
40秒前
41秒前
41秒前
41秒前
Zoom应助ansei采纳,获得30
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934907
求助须知:如何正确求助?哪些是违规求助? 4202605
关于积分的说明 13058103
捐赠科研通 3977151
什么是DOI,文献DOI怎么找? 2179393
邀请新用户注册赠送积分活动 1195525
关于科研通互助平台的介绍 1106915