亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LFANet: Lightweight feature attention network for abnormal cell segmentation in cervical cytology images

计算机科学 人工智能 分割 特征(语言学) 特征提取 模式识别(心理学) 过程(计算) 编码器 深度学习 语言学 哲学 操作系统
作者
Yanli Zhao,Chong Fu,Sen Xu,Lin Cao,Hongfeng Ma
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:145: 105500-105500 被引量:34
标识
DOI:10.1016/j.compbiomed.2022.105500
摘要

With the widely applied computer-aided diagnosis techniques in cervical cancer screening, cell segmentation has become a necessary step to determine the progression of cervical cancer. Traditional manual methods alleviate the dilemma caused by the shortage of medical resources to a certain extent. Unfortunately, with their low segmentation accuracy for abnormal cells, the complex process cannot realize an automatic diagnosis. In addition, various methods on deep learning can automatically extract image features with high accuracy and small error, making artificial intelligence increasingly popular in computer-aided diagnosis. However, they are not suitable for clinical practice because those complicated models would result in more redundant parameters from networks. To address the above problems, a lightweight feature attention network (LFANet), extracting differentially abundant feature information of objects with various resolutions, is proposed in this study. The model can accurately segment both the nucleus and cytoplasm regions in cervical images. Specifically, a lightweight feature extraction module is designed as an encoder to extract abundant features of input images, combining with depth-wise separable convolution, residual connection and attention mechanism. Besides, the feature layer attention module is added to precisely recover pixel location, which employs the global high-level information as a guide for the low-level features, capturing dependencies of channel features. Finally, our LFANet model is evaluated on all four independent datasets. The experimental results demonstrate that compared with other advanced methods, our proposed network achieves state-of-the-art performance with a low computational complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
花花发布了新的文献求助10
5秒前
NexusExplorer应助一休采纳,获得10
5秒前
6秒前
11秒前
花花完成签到,获得积分20
11秒前
炙热雅琴发布了新的文献求助10
12秒前
Lucas应助莫问题采纳,获得10
13秒前
14秒前
15秒前
chenzheng完成签到 ,获得积分10
16秒前
dzll完成签到,获得积分10
18秒前
fybd88完成签到,获得积分10
19秒前
万能图书馆应助山茱萸采纳,获得10
24秒前
24秒前
莫问题发布了新的文献求助10
30秒前
无辜的傲安完成签到,获得积分20
31秒前
32秒前
40秒前
勤奋尔冬完成签到 ,获得积分10
42秒前
48秒前
休斯顿完成签到,获得积分10
49秒前
59秒前
33完成签到 ,获得积分10
1分钟前
飞常爱你哦完成签到 ,获得积分20
1分钟前
斯文败类应助FATFAT采纳,获得10
1分钟前
1分钟前
1分钟前
Dec发布了新的文献求助10
1分钟前
xiaoyuyuyu完成签到 ,获得积分10
1分钟前
1分钟前
matrixu完成签到,获得积分10
1分钟前
莫问题完成签到,获得积分10
1分钟前
mushroom完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
搜集达人应助xjz采纳,获得10
1分钟前
一休发布了新的文献求助10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407675
求助须知:如何正确求助?哪些是违规求助? 4525191
关于积分的说明 14101408
捐赠科研通 4439018
什么是DOI,文献DOI怎么找? 2436558
邀请新用户注册赠送积分活动 1428528
关于科研通互助平台的介绍 1406604