Detection of copy number variations from NGS data by using an adaptive kernel density estimation-based outlier factor

拷贝数变化 计算机科学 离群值 鉴定(生物学) 核(代数) 核密度估计 异常检测 数据挖掘 人工智能 生物 基因组 遗传学 统计 数学 基因 组合数学 植物 估计员
作者
A. K. Alvi Haque,Kun Xie,Kang Liu,Haiyong Zhao,Xiaohui Yang,Xiguo Yuan
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:126: 103524-103524 被引量:1
标识
DOI:10.1016/j.dsp.2022.103524
摘要

Copy number variation (CNV) is a prevalent type of genetic structural variation and is the origin of numerous hereditary diseases. Thorough identification and classification of CNVs are fundamental to provide a whole perspective of human genome and to discover diseased genes. Next generation sequencing (NGS) has provided an abundance of data which has accelerated the revolution of algorithm design to identify CNVs at base-pair resolution. Nonetheless, certain functions are often influenced by several factors which include sequencing artifacts, GC bias, and interrelations among neighboring positions within CNVs. Though a number of peer strategies have coped with a few of the aforementioned artifacts by modeling their approaches, precise identification of CNVs of low amplitudes remains a difficult task. In this paper, we propose an alternative computational method CNV-KOF, to accurately detect CNVs of whole-range amplitudes based on NGS data. The approach adopts an adaptive kernel density estimation (KDE)-based strategy and assigns a KDE-based outlier factor (KOF) to each genomic segment. Along with the outlier factor profile, CNV-KOF adopts a box plot strategy to detect CNVs without depending on distribution assumptions. We have tested CNV-KOF on simulated and real datasets compared to several peer methods. Simulation and real sequencing data experiments demonstrate that the proposed method outperforms the peer methods in respect to F1-score, sensitivity, and precision. Thus, CNV-KOF is expected to become a complementary tool for detecting CNVs even in scenarios of low-level coverage and tumor purity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妮儿发布了新的文献求助10
刚刚
刚刚
MADKAI发布了新的文献求助10
1秒前
insane完成签到,获得积分10
1秒前
云儿发布了新的文献求助20
1秒前
Jasper应助哲999采纳,获得10
1秒前
wanci应助拟拟采纳,获得10
2秒前
王超超完成签到,获得积分10
2秒前
2秒前
圈圈发布了新的文献求助10
3秒前
狼来了aas完成签到,获得积分10
3秒前
3秒前
大胆的莛发布了新的文献求助10
4秒前
文静的信封完成签到,获得积分10
4秒前
CipherSage应助wu采纳,获得10
4秒前
科目三应助震666采纳,获得30
4秒前
April发布了新的文献求助10
5秒前
加菲丰丰应助猫橘汽水采纳,获得30
5秒前
阳光海云完成签到,获得积分10
5秒前
6秒前
攒一口袋星星完成签到,获得积分10
6秒前
alwry完成签到,获得积分10
6秒前
eyebrow完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
小胖鱼完成签到,获得积分20
7秒前
Grayball应助啊这啥啊这是采纳,获得10
8秒前
cf完成签到,获得积分10
8秒前
王一线完成签到,获得积分10
9秒前
9秒前
9秒前
栗子完成签到,获得积分10
9秒前
bkagyin应助格格星采纳,获得10
10秒前
Youdge完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
yyf发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740