Detection of copy number variations from NGS data by using an adaptive kernel density estimation-based outlier factor

拷贝数变化 计算机科学 离群值 鉴定(生物学) 核(代数) 核密度估计 异常检测 数据挖掘 人工智能 生物 基因组 遗传学 统计 数学 基因 组合数学 植物 估计员
作者
A. K. Alvi Haque,Kun Xie,Kang Liu,Haiyong Zhao,Xiaohui Yang,Xiguo Yuan
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:126: 103524-103524 被引量:1
标识
DOI:10.1016/j.dsp.2022.103524
摘要

Copy number variation (CNV) is a prevalent type of genetic structural variation and is the origin of numerous hereditary diseases. Thorough identification and classification of CNVs are fundamental to provide a whole perspective of human genome and to discover diseased genes. Next generation sequencing (NGS) has provided an abundance of data which has accelerated the revolution of algorithm design to identify CNVs at base-pair resolution. Nonetheless, certain functions are often influenced by several factors which include sequencing artifacts, GC bias, and interrelations among neighboring positions within CNVs. Though a number of peer strategies have coped with a few of the aforementioned artifacts by modeling their approaches, precise identification of CNVs of low amplitudes remains a difficult task. In this paper, we propose an alternative computational method CNV-KOF, to accurately detect CNVs of whole-range amplitudes based on NGS data. The approach adopts an adaptive kernel density estimation (KDE)-based strategy and assigns a KDE-based outlier factor (KOF) to each genomic segment. Along with the outlier factor profile, CNV-KOF adopts a box plot strategy to detect CNVs without depending on distribution assumptions. We have tested CNV-KOF on simulated and real datasets compared to several peer methods. Simulation and real sequencing data experiments demonstrate that the proposed method outperforms the peer methods in respect to F1-score, sensitivity, and precision. Thus, CNV-KOF is expected to become a complementary tool for detecting CNVs even in scenarios of low-level coverage and tumor purity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
3秒前
4秒前
慕青应助浮生采纳,获得10
4秒前
喜羊羊完成签到,获得积分10
5秒前
6秒前
ccx完成签到,获得积分10
6秒前
7秒前
CodeCraft应助zmin采纳,获得10
8秒前
8秒前
zkl完成签到,获得积分20
8秒前
Old-Iron完成签到,获得积分10
8秒前
9秒前
mia发布了新的文献求助10
10秒前
哈哈哈完成签到,获得积分10
11秒前
11秒前
jagger发布了新的文献求助10
11秒前
Adrenaline发布了新的文献求助10
12秒前
橘宝完成签到,获得积分10
13秒前
可爱的函函应助zzw采纳,获得10
14秒前
传奇3应助kk采纳,获得10
15秒前
Hu发布了新的文献求助10
15秒前
wh雨完成签到,获得积分10
16秒前
唠叨的嘻嘻完成签到,获得积分20
16秒前
16秒前
李爱国应助TX采纳,获得10
16秒前
蓝胖子发布了新的文献求助10
16秒前
L同学发布了新的文献求助10
17秒前
18秒前
思源应助李龙波采纳,获得10
19秒前
852应助笨笨的凡梅采纳,获得10
19秒前
Ava应助从容的夏瑶采纳,获得10
19秒前
kk完成签到,获得积分10
20秒前
科研通AI2S应助zzt37927采纳,获得10
21秒前
21秒前
21秒前
22秒前
22秒前
聪明伶俐的猪猪侠完成签到,获得积分10
23秒前
23秒前
蓝色隐莲完成签到 ,获得积分10
24秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229144
求助须知:如何正确求助?哪些是违规求助? 2876975
关于积分的说明 8197101
捐赠科研通 2544315
什么是DOI,文献DOI怎么找? 1374291
科研通“疑难数据库(出版商)”最低求助积分说明 646923
邀请新用户注册赠送积分活动 621720