Detection of copy number variations from NGS data by using an adaptive kernel density estimation-based outlier factor

拷贝数变化 计算机科学 离群值 鉴定(生物学) 核(代数) 核密度估计 异常检测 数据挖掘 人工智能 生物 基因组 遗传学 统计 数学 基因 组合数学 植物 估计员
作者
A. K. Alvi Haque,Kun Xie,Kang Liu,Haiyong Zhao,Xiaohui Yang,Xiguo Yuan
出处
期刊:Digital Signal Processing [Elsevier BV]
卷期号:126: 103524-103524 被引量:1
标识
DOI:10.1016/j.dsp.2022.103524
摘要

Copy number variation (CNV) is a prevalent type of genetic structural variation and is the origin of numerous hereditary diseases. Thorough identification and classification of CNVs are fundamental to provide a whole perspective of human genome and to discover diseased genes. Next generation sequencing (NGS) has provided an abundance of data which has accelerated the revolution of algorithm design to identify CNVs at base-pair resolution. Nonetheless, certain functions are often influenced by several factors which include sequencing artifacts, GC bias, and interrelations among neighboring positions within CNVs. Though a number of peer strategies have coped with a few of the aforementioned artifacts by modeling their approaches, precise identification of CNVs of low amplitudes remains a difficult task. In this paper, we propose an alternative computational method CNV-KOF, to accurately detect CNVs of whole-range amplitudes based on NGS data. The approach adopts an adaptive kernel density estimation (KDE)-based strategy and assigns a KDE-based outlier factor (KOF) to each genomic segment. Along with the outlier factor profile, CNV-KOF adopts a box plot strategy to detect CNVs without depending on distribution assumptions. We have tested CNV-KOF on simulated and real datasets compared to several peer methods. Simulation and real sequencing data experiments demonstrate that the proposed method outperforms the peer methods in respect to F1-score, sensitivity, and precision. Thus, CNV-KOF is expected to become a complementary tool for detecting CNVs even in scenarios of low-level coverage and tumor purity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
思源应助明天开始戒绿茶采纳,获得10
5秒前
6秒前
7秒前
俭朴的又菡完成签到,获得积分10
7秒前
小苹果发布了新的文献求助10
7秒前
大洋洋完成签到,获得积分10
7秒前
HKY发布了新的文献求助10
8秒前
10秒前
10秒前
东木应助执葵采纳,获得20
12秒前
AlwaysKim发布了新的文献求助10
12秒前
12秒前
13秒前
FashionBoy应助涵泽采纳,获得10
13秒前
mue发布了新的文献求助10
15秒前
15秒前
噜噜晓发布了新的文献求助10
15秒前
16秒前
科研通AI2S应助CC采纳,获得10
17秒前
19秒前
顾矜应助duxiao采纳,获得10
19秒前
一切顺利完成签到,获得积分10
20秒前
21秒前
houfei发布了新的文献求助10
21秒前
张国柱完成签到,获得积分10
22秒前
漏脑之鱼完成签到 ,获得积分10
22秒前
23秒前
充电宝应助璨澄采纳,获得10
23秒前
cwx发布了新的文献求助10
23秒前
暖小阳完成签到,获得积分10
24秒前
25秒前
26秒前
涵泽发布了新的文献求助10
26秒前
maymei发布了新的文献求助10
28秒前
鞋子完成签到,获得积分10
29秒前
29秒前
jyd完成签到,获得积分10
31秒前
32秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962205
求助须知:如何正确求助?哪些是违规求助? 3508430
关于积分的说明 11140874
捐赠科研通 3241109
什么是DOI,文献DOI怎么找? 1791341
邀请新用户注册赠送积分活动 872825
科研通“疑难数据库(出版商)”最低求助积分说明 803382