Cerebral aneurysm evolution modeling from microstructural computational models to machine learning: A review

动脉瘤 计算机科学 人工智能 机器学习 干预(咨询) 疾病 计算模型 放射科 医学 内科学 精神科
作者
Malikeh Nabaei
出处
期刊:Computational Biology and Chemistry [Elsevier]
卷期号:98: 107676-107676 被引量:3
标识
DOI:10.1016/j.compbiolchem.2022.107676
摘要

Predicting the future behavior of cerebral aneurysms was the target of several studies in recent years. When an unruptured cerebral aneurysm is diagnosed, the physician has to decide about the treatment method. Often more giant aneurysms are diagnosed at higher risk of rupture and are candidates for intervention. However, several clinical and morphological parameters are introduced as risk factors. Therefore, some small size aneurysms with a higher growth rate and rupture risk may be missed. Nowadays, computational models and artificial intelligence can help physicians make more precise decisions, not only according to the aneurysm size. Therefore, the target can be developing a tool that receives the patient history and medical images as input and gives the aneurysm growth rate and rupture risk as output. Achieving this target can be possible by developing a proper computational growth model and using artificial intelligence. This requires knowledge of the vascular microstructure and the procedure of disease development, including degradation and remodeling mechanisms. Moreover, geometrical and clinical risk factors should also be recognized and considered. The present article is a step-by-step indication of this concept. In this paper, first, a review of different computational growth models is presented. Then, the morphological and clinical risk factors are described, and at last, the methods of combining the computational growth models with machine learning are discussed. This review can help the researchers learn the fundamentals and take the proper future steps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HCl完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
2秒前
2秒前
Hollen完成签到 ,获得积分10
3秒前
慕青应助学术蠕虫采纳,获得10
4秒前
4秒前
叶子发布了新的文献求助10
5秒前
orangel完成签到,获得积分10
6秒前
半壶月色半边天完成签到 ,获得积分10
7秒前
tmpstlml发布了新的文献求助10
7秒前
8秒前
8秒前
不安饼干完成签到 ,获得积分10
10秒前
活泼的飞鸟完成签到,获得积分10
10秒前
11秒前
xuyun发布了新的文献求助10
11秒前
11秒前
zzcres完成签到,获得积分10
13秒前
eeeee完成签到 ,获得积分10
13秒前
乐观德地完成签到,获得积分10
14秒前
大个应助yf_zhu采纳,获得10
14秒前
llk发布了新的文献求助10
15秒前
一只大肥猫完成签到,获得积分10
15秒前
15秒前
17秒前
17秒前
17秒前
17秒前
科研通AI5应助GGG采纳,获得10
18秒前
18秒前
20秒前
Ann发布了新的文献求助20
20秒前
20秒前
buno应助duxinyue采纳,获得10
20秒前
xlj发布了新的文献求助10
21秒前
21秒前
可爱的函函应助zhen采纳,获得10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808