已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cerebral aneurysm evolution modeling from microstructural computational models to machine learning: A review

动脉瘤 计算机科学 人工智能 机器学习 干预(咨询) 疾病 计算模型 放射科 医学 内科学 精神科
作者
Malikeh Nabaei
出处
期刊:Computational Biology and Chemistry [Elsevier]
卷期号:98: 107676-107676 被引量:3
标识
DOI:10.1016/j.compbiolchem.2022.107676
摘要

Predicting the future behavior of cerebral aneurysms was the target of several studies in recent years. When an unruptured cerebral aneurysm is diagnosed, the physician has to decide about the treatment method. Often more giant aneurysms are diagnosed at higher risk of rupture and are candidates for intervention. However, several clinical and morphological parameters are introduced as risk factors. Therefore, some small size aneurysms with a higher growth rate and rupture risk may be missed. Nowadays, computational models and artificial intelligence can help physicians make more precise decisions, not only according to the aneurysm size. Therefore, the target can be developing a tool that receives the patient history and medical images as input and gives the aneurysm growth rate and rupture risk as output. Achieving this target can be possible by developing a proper computational growth model and using artificial intelligence. This requires knowledge of the vascular microstructure and the procedure of disease development, including degradation and remodeling mechanisms. Moreover, geometrical and clinical risk factors should also be recognized and considered. The present article is a step-by-step indication of this concept. In this paper, first, a review of different computational growth models is presented. Then, the morphological and clinical risk factors are described, and at last, the methods of combining the computational growth models with machine learning are discussed. This review can help the researchers learn the fundamentals and take the proper future steps.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cyx发布了新的文献求助20
1秒前
自渡完成签到 ,获得积分10
1秒前
香蕉觅云应助满意的颦采纳,获得10
1秒前
我爱行楷完成签到,获得积分10
2秒前
yan发布了新的文献求助10
3秒前
晁子枫完成签到 ,获得积分10
4秒前
5秒前
9秒前
ttssooe发布了新的文献求助10
10秒前
想退休的快乐土豆泥完成签到,获得积分10
11秒前
冯宇发布了新的文献求助10
12秒前
12秒前
LTY完成签到,获得积分10
16秒前
dihaha完成签到,获得积分10
17秒前
朱滨松完成签到 ,获得积分10
17秒前
徐志豪发布了新的文献求助10
17秒前
msn00完成签到 ,获得积分10
19秒前
华仔应助辰枫吖采纳,获得10
22秒前
满意的颦完成签到,获得积分10
23秒前
雪白砖家完成签到 ,获得积分10
26秒前
uu完成签到 ,获得积分10
26秒前
langzfs完成签到,获得积分10
33秒前
ccm应助科研通管家采纳,获得10
33秒前
共享精神应助科研通管家采纳,获得10
33秒前
桐桐应助科研通管家采纳,获得10
34秒前
tuanheqi应助科研通管家采纳,获得50
34秒前
星辰大海应助科研通管家采纳,获得10
34秒前
34秒前
上善若水呦完成签到 ,获得积分10
38秒前
打打应助幻心采纳,获得10
38秒前
CipherSage应助墨苒采纳,获得10
43秒前
46秒前
幻心完成签到,获得积分20
46秒前
冯宇完成签到,获得积分10
48秒前
幻心发布了新的文献求助10
50秒前
风清扬应助安详冰夏采纳,获得30
53秒前
53秒前
不知名完成签到,获得积分10
57秒前
如意竺完成签到,获得积分10
1分钟前
chen完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5528747
求助须知:如何正确求助?哪些是违规求助? 4618195
关于积分的说明 14562134
捐赠科研通 4557054
什么是DOI,文献DOI怎么找? 2497330
邀请新用户注册赠送积分活动 1477552
关于科研通互助平台的介绍 1448838