Cerebral aneurysm evolution modeling from microstructural computational models to machine learning: A review

动脉瘤 计算机科学 人工智能 机器学习 干预(咨询) 疾病 计算模型 放射科 医学 内科学 精神科
作者
Malikeh Nabaei
出处
期刊:Computational Biology and Chemistry [Elsevier BV]
卷期号:98: 107676-107676 被引量:3
标识
DOI:10.1016/j.compbiolchem.2022.107676
摘要

Predicting the future behavior of cerebral aneurysms was the target of several studies in recent years. When an unruptured cerebral aneurysm is diagnosed, the physician has to decide about the treatment method. Often more giant aneurysms are diagnosed at higher risk of rupture and are candidates for intervention. However, several clinical and morphological parameters are introduced as risk factors. Therefore, some small size aneurysms with a higher growth rate and rupture risk may be missed. Nowadays, computational models and artificial intelligence can help physicians make more precise decisions, not only according to the aneurysm size. Therefore, the target can be developing a tool that receives the patient history and medical images as input and gives the aneurysm growth rate and rupture risk as output. Achieving this target can be possible by developing a proper computational growth model and using artificial intelligence. This requires knowledge of the vascular microstructure and the procedure of disease development, including degradation and remodeling mechanisms. Moreover, geometrical and clinical risk factors should also be recognized and considered. The present article is a step-by-step indication of this concept. In this paper, first, a review of different computational growth models is presented. Then, the morphological and clinical risk factors are described, and at last, the methods of combining the computational growth models with machine learning are discussed. This review can help the researchers learn the fundamentals and take the proper future steps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助粒汇0采纳,获得10
刚刚
王嵩嵩发布了新的文献求助10
刚刚
鹏1989完成签到,获得积分10
1秒前
苏梓卿发布了新的文献求助10
2秒前
NSCWYH完成签到,获得积分10
2秒前
努力发AM发布了新的文献求助10
2秒前
123木头人发布了新的文献求助10
3秒前
体贴的语柔完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
庄周发布了新的文献求助10
4秒前
5秒前
大力听芹发布了新的文献求助10
5秒前
muzi发布了新的文献求助10
6秒前
dr1nk完成签到 ,获得积分10
6秒前
万能图书馆应助yuan采纳,获得10
6秒前
Xixi关注了科研通微信公众号
6秒前
Lyd发布了新的文献求助10
6秒前
鲤鱼丹蝶完成签到,获得积分20
7秒前
7秒前
李昀圃发布了新的文献求助10
7秒前
今后应助11采纳,获得10
8秒前
如意果汁发布了新的文献求助10
8秒前
糊涂的灵枫完成签到,获得积分10
9秒前
Owen应助Salut采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
思源应助缥缈早晨采纳,获得10
10秒前
10秒前
10秒前
科研通AI6应助大空翼采纳,获得10
10秒前
科研通AI5应助平常的无极采纳,获得10
10秒前
11秒前
吴文斌完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
庄周完成签到,获得积分10
12秒前
大个应助wlg采纳,获得10
12秒前
善学以致用应助苏卓文采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
小鼠脑外侧隔核的全脑投射研究 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Signals, Systems, and Signal Processing 400
Sociologies et cosmopolitisme méthodologique 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4619685
求助须知:如何正确求助?哪些是违规求助? 4021341
关于积分的说明 12448948
捐赠科研通 3705369
什么是DOI,文献DOI怎么找? 2043425
邀请新用户注册赠送积分活动 1075699
科研通“疑难数据库(出版商)”最低求助积分说明 958935