Effective differentiation between depressed patients and controls using discriminative eye movement features

扫视 顺利追击 眼球运动 逻辑回归 人工智能 心理学 线性判别分析 支持向量机 萧条(经济学) 二次分类器 听力学 物理医学与康复 医学 内科学 计算机科学 经济 宏观经济学
作者
Dan Zhang,Xu Liu,Lihua Xu,Yu Li,Yangyang Xu,Mengqing Xia,Zhenying Qian,Yingying Tang,Zhi Liu,Tao Chen,HaiChun Liu,Tianhong Zhang,Jijun Wang
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:307: 237-243 被引量:26
标识
DOI:10.1016/j.jad.2022.03.077
摘要

Depression is a common debilitating mental disorder caused by various factors. Identifying and diagnosing depression are challenging because the clinical evaluation of depression is mainly subjective, lacking objective and quantitative indicators. The present study investigated the value and significance of eye movement measurements in distinguishing depressed patients from controls. Ninety-five depressed patients and sixty-nine healthy controls performed three eye movement tests, including fixation stability, free-viewing, and anti-saccade tests, and eleven eye movement indexes were obtained from these tests. The independent t-test was adopted for group comparisons, and multiple logistic regression analysis was employed to identify diagnostic biomarkers. Support vector machine (SVM), quadratic discriminant analysis (QDA), and Bayesian (BYS) algorithms were applied to build the classification models. Depressed patients exhibited eye movement anomalies, characterized by increased saccade amplitude in the fixation stability test; diminished saccade velocity in the anti-saccade test; and reduced saccade amplitude, shorter scan path length, lower saccade velocity, decreased dynamic range of pupil size, and lower pupil size ratio in the free-viewing test. Four features mentioned above entered the logistic regression equation. The classification accuracies of SVM, QDA, and BYS models reached 86.0%, 81.1%, and 83.5%, respectively. Depressed patients exhibited abnormalities across multiple tests of eye movements, assisting in differentiating depressed patients from healthy controls in a cost-effective and non-invasive manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lastsnow完成签到 ,获得积分10
1秒前
汉堡包应助是玥玥啊采纳,获得10
1秒前
沙克几十块完成签到,获得积分10
1秒前
夏天不回来完成签到,获得积分10
2秒前
KAZEN完成签到 ,获得积分10
3秒前
3秒前
漂亮雨柏完成签到,获得积分20
3秒前
3秒前
zasideler完成签到,获得积分10
3秒前
3秒前
柳贯一完成签到,获得积分10
4秒前
51545645完成签到,获得积分10
4秒前
忧郁凡桃完成签到,获得积分10
4秒前
5秒前
科目三应助zhzh0618采纳,获得10
6秒前
Slemon完成签到,获得积分10
6秒前
小马甲应助Judson采纳,获得10
6秒前
追寻绮玉完成签到,获得积分10
6秒前
天真枫发布了新的文献求助10
6秒前
橙子完成签到,获得积分10
6秒前
jenningseastera完成签到,获得积分0
7秒前
dwct发布了新的文献求助10
7秒前
7秒前
7秒前
神鸢发布了新的文献求助10
7秒前
晓世完成签到,获得积分10
8秒前
柔弱静柏完成签到,获得积分10
8秒前
沉静的迎荷完成签到,获得积分10
8秒前
研友_8yX0xZ完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
stg完成签到,获得积分10
10秒前
伙腿长发布了新的文献求助10
10秒前
斯文败类应助关于我采纳,获得20
10秒前
Lolo发布了新的文献求助50
11秒前
11秒前
Ava应助xiaoju采纳,获得10
11秒前
杨半鬼发布了新的文献求助30
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977