Effective differentiation between depressed patients and controls using discriminative eye movement features

扫视 顺利追击 眼球运动 逻辑回归 人工智能 心理学 线性判别分析 支持向量机 萧条(经济学) 二次分类器 听力学 物理医学与康复 医学 内科学 计算机科学 经济 宏观经济学
作者
Dan Zhang,Xu Liu,Lihua Xu,Yu Li,Yangyang Xu,Mengqing Xia,Zhenying Qian,Yingying Tang,Zhi Liu,Tao Chen,HaiChun Liu,Tianhong Zhang,Jijun Wang
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:307: 237-243 被引量:15
标识
DOI:10.1016/j.jad.2022.03.077
摘要

Depression is a common debilitating mental disorder caused by various factors. Identifying and diagnosing depression are challenging because the clinical evaluation of depression is mainly subjective, lacking objective and quantitative indicators. The present study investigated the value and significance of eye movement measurements in distinguishing depressed patients from controls. Ninety-five depressed patients and sixty-nine healthy controls performed three eye movement tests, including fixation stability, free-viewing, and anti-saccade tests, and eleven eye movement indexes were obtained from these tests. The independent t-test was adopted for group comparisons, and multiple logistic regression analysis was employed to identify diagnostic biomarkers. Support vector machine (SVM), quadratic discriminant analysis (QDA), and Bayesian (BYS) algorithms were applied to build the classification models. Depressed patients exhibited eye movement anomalies, characterized by increased saccade amplitude in the fixation stability test; diminished saccade velocity in the anti-saccade test; and reduced saccade amplitude, shorter scan path length, lower saccade velocity, decreased dynamic range of pupil size, and lower pupil size ratio in the free-viewing test. Four features mentioned above entered the logistic regression equation. The classification accuracies of SVM, QDA, and BYS models reached 86.0%, 81.1%, and 83.5%, respectively. Depressed patients exhibited abnormalities across multiple tests of eye movements, assisting in differentiating depressed patients from healthy controls in a cost-effective and non-invasive manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luoshi发布了新的文献求助10
刚刚
刚刚
可靠sue完成签到,获得积分10
1秒前
dzdzn3完成签到 ,获得积分20
1秒前
zjh发布了新的文献求助10
1秒前
yu_z完成签到 ,获得积分10
1秒前
上官若男应助韭菜盒子采纳,获得10
1秒前
细腻晓露完成签到,获得积分10
1秒前
大吴克发布了新的文献求助10
2秒前
饱满的煎饼完成签到,获得积分10
2秒前
dzdzn3关注了科研通微信公众号
2秒前
KING完成签到,获得积分10
3秒前
seventonight2完成签到,获得积分10
3秒前
顾矜应助xwc采纳,获得10
3秒前
Relax发布了新的文献求助10
3秒前
微笑的语梦完成签到 ,获得积分10
4秒前
落寞的紫山完成签到,获得积分10
4秒前
杨大大发布了新的文献求助10
4秒前
BOSSJING完成签到,获得积分10
4秒前
Jasper应助搞怪的人龙采纳,获得10
5秒前
5秒前
benj完成签到,获得积分10
5秒前
5秒前
zoko发布了新的文献求助10
5秒前
周老八发布了新的文献求助10
5秒前
5秒前
小杨爱吃羊完成签到 ,获得积分10
5秒前
lszhw完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
美好乌龟完成签到 ,获得积分10
6秒前
6秒前
烟雨行舟完成签到,获得积分10
7秒前
7秒前
7秒前
搜集达人应助刘星星采纳,获得30
8秒前
赘婿应助顺利水杯采纳,获得10
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740