Effective differentiation between depressed patients and controls using discriminative eye movement features

扫视 顺利追击 眼球运动 逻辑回归 人工智能 心理学 线性判别分析 支持向量机 萧条(经济学) 二次分类器 听力学 物理医学与康复 医学 内科学 计算机科学 经济 宏观经济学
作者
Dan Zhang,Xu Liu,Lihua Xu,Yu Li,Yangyang Xu,Mengqing Xia,Zhenying Qian,Yingying Tang,Zhi Liu,Tao Chen,HaiChun Liu,Tianhong Zhang,Jijun Wang
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:307: 237-243 被引量:15
标识
DOI:10.1016/j.jad.2022.03.077
摘要

Depression is a common debilitating mental disorder caused by various factors. Identifying and diagnosing depression are challenging because the clinical evaluation of depression is mainly subjective, lacking objective and quantitative indicators. The present study investigated the value and significance of eye movement measurements in distinguishing depressed patients from controls. Ninety-five depressed patients and sixty-nine healthy controls performed three eye movement tests, including fixation stability, free-viewing, and anti-saccade tests, and eleven eye movement indexes were obtained from these tests. The independent t-test was adopted for group comparisons, and multiple logistic regression analysis was employed to identify diagnostic biomarkers. Support vector machine (SVM), quadratic discriminant analysis (QDA), and Bayesian (BYS) algorithms were applied to build the classification models. Depressed patients exhibited eye movement anomalies, characterized by increased saccade amplitude in the fixation stability test; diminished saccade velocity in the anti-saccade test; and reduced saccade amplitude, shorter scan path length, lower saccade velocity, decreased dynamic range of pupil size, and lower pupil size ratio in the free-viewing test. Four features mentioned above entered the logistic regression equation. The classification accuracies of SVM, QDA, and BYS models reached 86.0%, 81.1%, and 83.5%, respectively. Depressed patients exhibited abnormalities across multiple tests of eye movements, assisting in differentiating depressed patients from healthy controls in a cost-effective and non-invasive manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mygod发布了新的文献求助10
刚刚
刚刚
leslie发布了新的文献求助10
1秒前
欢呼高山发布了新的文献求助10
1秒前
2秒前
库洛洛发布了新的文献求助10
2秒前
淡淡的荷花完成签到,获得积分10
2秒前
JasonWu完成签到 ,获得积分10
3秒前
华仔应助mygod采纳,获得10
3秒前
等待的安露完成签到,获得积分10
3秒前
zqingxia发布了新的文献求助10
4秒前
祈梦Inori发布了新的文献求助10
4秒前
zyy完成签到,获得积分10
7秒前
7秒前
充电宝应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
小富婆发布了新的文献求助10
9秒前
LHL完成签到,获得积分10
9秒前
戈戈唔完成签到 ,获得积分10
10秒前
10秒前
11秒前
12秒前
酷波er应助白华苍松采纳,获得10
12秒前
12秒前
初夏完成签到,获得积分0
14秒前
14秒前
15秒前
15秒前
tanhaili完成签到,获得积分10
15秒前
安夕阳发布了新的文献求助10
16秒前
16秒前
16秒前
可爱的函函应助彭于彦祖采纳,获得10
17秒前
糊涂的沛山完成签到 ,获得积分10
17秒前
任性冰凡发布了新的文献求助10
17秒前
18秒前
mygod发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149112
求助须知:如何正确求助?哪些是违规求助? 2800154
关于积分的说明 7838819
捐赠科研通 2457690
什么是DOI,文献DOI怎么找? 1307972
科研通“疑难数据库(出版商)”最低求助积分说明 628363
版权声明 601706