Effective differentiation between depressed patients and controls using discriminative eye movement features

扫视 顺利追击 眼球运动 逻辑回归 人工智能 心理学 线性判别分析 支持向量机 萧条(经济学) 二次分类器 听力学 物理医学与康复 医学 内科学 计算机科学 经济 宏观经济学
作者
Dan Zhang,Xu Liu,Lihua Xu,Yu Li,Yangyang Xu,Mengqing Xia,Zhenying Qian,Yingying Tang,Zhi Liu,Tao Chen,HaiChun Liu,Tianhong Zhang,Jijun Wang
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:307: 237-243 被引量:19
标识
DOI:10.1016/j.jad.2022.03.077
摘要

Depression is a common debilitating mental disorder caused by various factors. Identifying and diagnosing depression are challenging because the clinical evaluation of depression is mainly subjective, lacking objective and quantitative indicators. The present study investigated the value and significance of eye movement measurements in distinguishing depressed patients from controls. Ninety-five depressed patients and sixty-nine healthy controls performed three eye movement tests, including fixation stability, free-viewing, and anti-saccade tests, and eleven eye movement indexes were obtained from these tests. The independent t-test was adopted for group comparisons, and multiple logistic regression analysis was employed to identify diagnostic biomarkers. Support vector machine (SVM), quadratic discriminant analysis (QDA), and Bayesian (BYS) algorithms were applied to build the classification models. Depressed patients exhibited eye movement anomalies, characterized by increased saccade amplitude in the fixation stability test; diminished saccade velocity in the anti-saccade test; and reduced saccade amplitude, shorter scan path length, lower saccade velocity, decreased dynamic range of pupil size, and lower pupil size ratio in the free-viewing test. Four features mentioned above entered the logistic regression equation. The classification accuracies of SVM, QDA, and BYS models reached 86.0%, 81.1%, and 83.5%, respectively. Depressed patients exhibited abnormalities across multiple tests of eye movements, assisting in differentiating depressed patients from healthy controls in a cost-effective and non-invasive manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
helen发布了新的文献求助10
2秒前
qcwindchasing完成签到,获得积分10
3秒前
畅快的胡萝卜完成签到,获得积分10
3秒前
fancyiii发布了新的文献求助10
3秒前
Lum1na发布了新的文献求助10
3秒前
ling发布了新的文献求助10
4秒前
大模型应助MORNING采纳,获得10
4秒前
5秒前
卡卡西应助re采纳,获得10
5秒前
JamesPei应助re采纳,获得10
5秒前
嗯呢应助坦率紫烟采纳,获得10
6秒前
7秒前
顾矜应助十三采纳,获得10
7秒前
BBBBB发布了新的文献求助30
8秒前
flywee发布了新的文献求助10
12秒前
华hua发布了新的文献求助10
12秒前
领导范儿应助fffff采纳,获得10
14秒前
大模型应助ling采纳,获得10
14秒前
15秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
22秒前
24秒前
嘴嘴完成签到,获得积分10
25秒前
坐忘道发布了新的文献求助10
25秒前
zzzzzzzz完成签到,获得积分10
26秒前
哆啦A梦发布了新的文献求助10
26秒前
conjee发布了新的文献求助30
26秒前
28秒前
大个应助lindahuang采纳,获得10
30秒前
31秒前
宁天发布了新的文献求助10
31秒前
Hopelife完成签到,获得积分10
31秒前
我是老大应助N型半导体采纳,获得10
31秒前
xuaotian完成签到,获得积分10
31秒前
LXH发布了新的文献求助30
34秒前
丰富的土豆应助cody采纳,获得10
35秒前
哆啦A梦完成签到,获得积分10
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952453
求助须知:如何正确求助?哪些是违规求助? 3497823
关于积分的说明 11088977
捐赠科研通 3228398
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303