线粒体
细胞生物学
内质网
MFN1型
氧化磷酸化
化学
脂多糖
生物能学
生物
线粒体融合
生物化学
免疫学
线粒体DNA
基因
作者
Leandro Henrique de Paula Assis,Gabriel G. Dorighello,Helena C.F. Oliveira
标识
DOI:10.1016/j.bbrc.2022.03.086
摘要
Macrophages play a role in host defense, tissue remodeling and inflammation. Different inflammatory stimuli drive macrophage phenotypes and responses. In this study we investigated the relationship between macrophages immune phenotype and mitochondrial bioenergetics, cell redox state and endoplasmic reticulum (ER)-mitochondria interaction. Bacterial lipopolysaccharide (LPS) and interferon-γ (IFNγ) pro-inflammatory stimuli decreased oxidative metabolism (basal, phosphorylating and maximal conditions) and increased baseline glycolysis (117%) and glycolytic capacity (43%) in THP-1 macrophages. In contrast, interleukin-4 (IL4) and interleukin-13 (IL13) anti-inflammatory stimuli increased the oxygen consumption rates in baseline conditions (21%) and associated with ATP production (19%). LPS + IFNγ stimuli reduced superoxide anion levels by accelerating its conversion into hydrogen peroxide (H2O2) while IL4+IL13 decreased H2O2 release rates. The source of these oxidants was extra-mitochondrial and associated with increased NOX2 and SOD1 gene expression. LPS + IFNγ stimuli decreased ER-mitochondria contact sites as measured by IP3R1-VDAC1 interaction (34%) and markedly upregulated genes involved in mitochondrial fusion (9–10 fold, MFN1 and 2) and fission (∼7 fold, DRP1 and FIS1). Conversely, IL4+IL13 stimuli did not altered ER-mitochondria interactions nor MFN1 and 2 expression. Together, these results unveil ER-mitochondria interaction pattern as a novel feature of macrophage immunological, metabolic and redox profiles.
科研通智能强力驱动
Strongly Powered by AbleSci AI