Combining Excellent Selectivity with Broad Target Scope: Biosensing with Arrayed Deep Cavitand Hosts

选择性 分子识别 生物传感器 组合化学 化学 葫芦素 荧光 结合选择性 纳米技术 生物化学 超分子化学 材料科学 分子 有机化学 催化作用 物理 量子力学
作者
Wenwan Zhong,Richard J. Hooley
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:55 (7): 1035-1046 被引量:17
标识
DOI:10.1021/acs.accounts.2c00026
摘要

Simple macrocyclic water-soluble hosts such as cucurbiturils, cyclophanes, and calixarenes have long been used for biosensing via indicator displacement assays. Using multiple hosts and dyes in an arrayed format allows pattern recognition-based "chemical nose" sensing, which confers exquisite selectivity, even rivaling the abilities of biological recognition tools such as antibodies. However, a challenge in indicator displacement-based biosensing with macrocyclic hosts is that selectivity and scope are often inversely correlated: strong selectivity for a specific target can limit wide application, and broad scope sensing can suffer from a lack of selectivity between similar targets. This problem can be addressed by using water-soluble, self-folding deep cavitands as hosts. These flexible bowl-shaped receptors can be easily functionalized with different motifs at the upper and lower rim, and the large cavities can bind many different fluorescent dyes, causing either fluorescence enhancement or quenching upon binding.Cavity-based affinity is strongest for NMe3+ groups such as trimethyl-lysine, and we have exploited this for the site-selective recognition of post-translational lysine methylations in oligopeptides. The host recognizes the NMe3+ group, and by applying differently functionalized hosts in an arrayed format, discrimination between identical modifications at different positions on the oligopeptide is possible. Multiple recognition elements can be exploited for selectivity, including a defined, yet "breathable" cavity, and variable upper rim functions oriented toward the target.While the performance of the host/guest sensing system is impressive for lysine methylations, the most important advance is the use of multiple different sensing mechanisms that can target a broad range of different biorelevant species. The amphiphilic deep cavitands can both bind fluorescent dyes and interact with charged biomolecules. These non-cavity-based interactions, when paired with additives such as heavy metal ions, modulate fluorescence response in an indirect manner, and these different mechanisms allow selective recognition of serine phosphorylation, lysine acetylation, and arginine citrullination. Other targets include heavy metals, drugs of abuse, and protein isoforms. Furthermore, the hosts can be applied in supramolecular tandem assays of enzyme function: the broad scope allows analysis of such different enzymes as chromatin writers/erasers, kinases, and phosphatases, all from a single host scaffold. Finally, the indirect sensing concept allows application in sensing different oligonucleotide secondary structures, including G-quadruplexes, hairpins, triplexes, and i-motifs. Discrimination between DNA strands with highly similar structures such as G-quadruplex strands with bulges and vacancies can be achieved. Instead of relying on a single highly specific fluorescent probe, the synthetic hosts tune the fluorophore-DNA interaction, introducing multiple recognition equilibria that modulate the fluorescence signal. By applying machine learning algorithms, a classification model can be established that can accurately predict the folding state of unknown sequences. Overall, the unique recognition profile of self-folded deep cavitands provides a powerful, yet simple sensing platform, one that can be easily tuned for a wide scope of biorelevant targets, in complex biological media, without sacrificing selectivity in the recognition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hmd_150完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
粘屁屁发布了新的文献求助10
1秒前
科研通AI2S应助ss采纳,获得10
1秒前
mxq发布了新的文献求助20
3秒前
量子星尘发布了新的文献求助10
4秒前
刘春晓发布了新的文献求助10
4秒前
典雅小甜瓜完成签到,获得积分20
5秒前
迪迦发布了新的文献求助10
5秒前
6秒前
6秒前
江阳宏发布了新的文献求助10
6秒前
7秒前
SMG完成签到 ,获得积分10
8秒前
ruby完成签到,获得积分10
10秒前
11秒前
婷牛牛儿发布了新的文献求助10
11秒前
FashionBoy应助典雅小甜瓜采纳,获得10
11秒前
11秒前
根号五发布了新的文献求助10
12秒前
勤奋芷妍完成签到,获得积分10
12秒前
小蘑菇应助江阳宏采纳,获得10
12秒前
13秒前
13秒前
14秒前
mxq发布了新的文献求助10
15秒前
酷波er应助bearhong采纳,获得10
15秒前
wind2631发布了新的文献求助10
15秒前
可爱的函函应助ppp采纳,获得10
16秒前
Hello应助1pint采纳,获得10
16秒前
17秒前
18秒前
aaa关闭了aaa文献求助
18秒前
朴素的小刺猬完成签到,获得积分20
19秒前
biotnt发布了新的文献求助10
19秒前
小吴同学完成签到,获得积分10
19秒前
最爱吃火锅完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660142
求助须知:如何正确求助?哪些是违规求助? 4831530
关于积分的说明 15089282
捐赠科研通 4818721
什么是DOI,文献DOI怎么找? 2578762
邀请新用户注册赠送积分活动 1533370
关于科研通互助平台的介绍 1492124