Research on the Recognition of Machining Conditions Based on Sound and Vibration Signals of a CNC Milling Machine

机械加工 振动 人工神经网络 计算机科学 支持向量机 工程类 熵(时间箭头) 数控 傅里叶变换 模式识别(心理学) 人工智能 机械工程 声学 数学 物理 量子力学 数学分析
作者
Wen-Lin Chu,Min-Jia Xie,Qun-Wei Chang,Her‐Terng Yau
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (7): 6364-6377 被引量:11
标识
DOI:10.1109/jsen.2022.3150751
摘要

Machining conditions of real-time identification tools is a key and trending issue for the industry. This paper focuses on identifying whether machining is performed as well as the chatter conditions generated during re-machining processes. Identifying whether or not machining conditions are met allows users to ensure the normal operation of machining equipment and identify situations that do not match the current conditional, so that they can take early action and further save on operational costs for machining. The objective of this paper is to identify the milling machining conditions, and the identified conditions will be categorized into whether cutting is required as well as whether chatter is observed. In order to identify these three conditions, sound and vibration signals are captured by sensors inside the milling machine, and the process of identification is subsequently analyzed and conditions established. In this paper, in order to produce a valid model, the extracted machining signal is characterized as a training model by the properties of Approximate Entropy and Short-Time Fourier Transform, and the k-fold cross-validation criteria is utilized to present the identification results. Finally, In this study, the model recognition rate of support vector machine with approximate entropy was 91.4%. The recognition rate of the convolutional neural network with short time span Fourier transform was 95.5%. Finally, the reduced network architecture can significantly reduce the training time and maintain the recognition rate at 93.6%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
根号3发布了新的文献求助10
1秒前
坚强的芙发布了新的文献求助10
1秒前
李爱国应助现代rong采纳,获得10
2秒前
缥莲发布了新的文献求助10
3秒前
英俊的铭应助4149采纳,获得10
3秒前
4秒前
老八的嘴完成签到,获得积分10
4秒前
5秒前
孤独千愁发布了新的文献求助10
5秒前
5秒前
6秒前
pluto应助张艺跃采纳,获得10
6秒前
7秒前
潇洒的博完成签到,获得积分10
7秒前
8秒前
9秒前
科研通AI2S应助缥莲采纳,获得10
9秒前
9秒前
Dinglin完成签到,获得积分10
9秒前
丛士乔完成签到 ,获得积分10
9秒前
10秒前
怒发十篇高分sci完成签到,获得积分20
10秒前
乔乔完成签到,获得积分10
11秒前
11秒前
杨昌琪发布了新的文献求助10
11秒前
Tom发布了新的文献求助10
11秒前
灵灵妖发布了新的文献求助10
11秒前
11秒前
情怀应助火星上的大炮采纳,获得10
12秒前
w_完成签到,获得积分10
12秒前
12秒前
majiayang完成签到,获得积分10
12秒前
颖w完成签到,获得积分10
13秒前
光亮的青寒完成签到,获得积分10
13秒前
情怀应助MC采纳,获得10
13秒前
蓝天发布了新的文献求助10
14秒前
14秒前
依依发布了新的文献求助10
14秒前
spencer177完成签到,获得积分10
14秒前
qianhuxinyu完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836