Research on the Recognition of Machining Conditions Based on Sound and Vibration Signals of a CNC Milling Machine

机械加工 振动 人工神经网络 计算机科学 支持向量机 工程类 熵(时间箭头) 数控 傅里叶变换 模式识别(心理学) 人工智能 机械工程 声学 数学 物理 量子力学 数学分析
作者
Wen-Lin Chu,Min-Jia Xie,Qun-Wei Chang,Her‐Terng Yau
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (7): 6364-6377 被引量:11
标识
DOI:10.1109/jsen.2022.3150751
摘要

Machining conditions of real-time identification tools is a key and trending issue for the industry. This paper focuses on identifying whether machining is performed as well as the chatter conditions generated during re-machining processes. Identifying whether or not machining conditions are met allows users to ensure the normal operation of machining equipment and identify situations that do not match the current conditional, so that they can take early action and further save on operational costs for machining. The objective of this paper is to identify the milling machining conditions, and the identified conditions will be categorized into whether cutting is required as well as whether chatter is observed. In order to identify these three conditions, sound and vibration signals are captured by sensors inside the milling machine, and the process of identification is subsequently analyzed and conditions established. In this paper, in order to produce a valid model, the extracted machining signal is characterized as a training model by the properties of Approximate Entropy and Short-Time Fourier Transform, and the k-fold cross-validation criteria is utilized to present the identification results. Finally, In this study, the model recognition rate of support vector machine with approximate entropy was 91.4%. The recognition rate of the convolutional neural network with short time span Fourier transform was 95.5%. Finally, the reduced network architecture can significantly reduce the training time and maintain the recognition rate at 93.6%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高丽娜完成签到,获得积分20
1秒前
嗯哼完成签到,获得积分0
2秒前
3秒前
3秒前
Francise发布了新的文献求助10
3秒前
高丽娜发布了新的文献求助10
3秒前
调研昵称发布了新的文献求助10
4秒前
合适的楠关注了科研通微信公众号
6秒前
6秒前
7秒前
zgsn完成签到,获得积分10
8秒前
自觉的万言完成签到 ,获得积分10
8秒前
Faine完成签到 ,获得积分10
8秒前
吴媛媛完成签到 ,获得积分10
9秒前
fzd发布了新的文献求助30
10秒前
hwy发布了新的文献求助10
10秒前
Abdory完成签到,获得积分10
11秒前
12秒前
服部平次发布了新的文献求助10
17秒前
狂野飞柏完成签到 ,获得积分10
19秒前
心灵美芯完成签到,获得积分10
19秒前
沉默沛白完成签到,获得积分10
20秒前
zeng5288完成签到,获得积分20
21秒前
千里共婵娟应助Bruce采纳,获得20
22秒前
Yishai_Song应助sjc采纳,获得10
23秒前
dan完成签到,获得积分10
23秒前
24秒前
贰鸟应助沉默沛白采纳,获得20
24秒前
24秒前
27秒前
27秒前
8R60d8应助dan采纳,获得40
28秒前
刘明锐完成签到,获得积分10
28秒前
starcatcher发布了新的文献求助10
29秒前
30秒前
lll完成签到,获得积分20
30秒前
hwy发布了新的文献求助10
31秒前
合适的楠发布了新的文献求助10
32秒前
NexusExplorer应助优雅涔雨采纳,获得10
32秒前
李爱国应助zxfaaaaa采纳,获得10
32秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165402
求助须知:如何正确求助?哪些是违规求助? 2816464
关于积分的说明 7912816
捐赠科研通 2476057
什么是DOI,文献DOI怎么找? 1318641
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388