Pyrethroid contamination in fish can contribute to the dietary uptake of pesticides. To mitigate this risk, the effects of frozen storage, thermal treatments (boiling and grilling), and non-thermal treatments (pickling and curing) on the reduction of bifenthrin, cypermethrin, deltamethrin, and permethrin in mackerel fillets were investigated. The curing process was the most effective method that significantly depleted 74.82-79.45% of pyrethroid residues from fish fillets, followed by the synergistic effect of eight weeks' frozen storage and grilling method (69.19-78.31%). Moreover, pyrethroid degradation pathways in processed fish were proposed into three major mechanisms of C1-C3 bond cleavage in cyclopropyl, dehalogenation, and double bond cleavage. These identical pathways incorporated with additional four mechanisms of dimerization, ester hydrolysis, oxidation, and reduction. This study recommended simple and effective processing practices for consumers and/or manufacturers to enhance food safety from the potential risks of consuming pyrethroid-contaminated fish.