FAST-LIO2: Fast Direct LiDAR-Inertial Odometry

里程计 激光雷达 树(集合论) 计算机科学 人工智能 水准点(测量) 增采样 算法 模式识别(心理学) 计算机视觉 数学 遥感 图像(数学) 组合数学 地图学 地理 机器人 移动机器人
作者
Wei Xu,Yixi Cai,Dongjiao He,Jiarong Lin,Fu Zhang
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:38 (4): 2053-2073 被引量:340
标识
DOI:10.1109/tro.2022.3141876
摘要

This article presents FAST-LIO2: a fast, robust, and versatile LiDAR-inertial odometry framework. Building on a highly efficient tightly coupled iterated Kalman filter, FAST-LIO2 has two key novelties that allow fast, robust, and accurate LiDAR navigation (and mapping). The first one is directly registering raw points to the map (and subsequently update the map, i.e., mapping) without extracting features. This enables the exploitation of subtle features in the environment and, hence, increases the accuracy. The elimination of a hand-engineered feature extraction module also makes it naturally adaptable to emerging LiDARs of different scanning patterns; the second main novelty is maintaining a map by an incremental k-dimensional (k-d) tree data structure, incremental k-d tree ( ikd-Tree ), that enables incremental updates (i.e., point insertion and delete) and dynamic rebalancing. Compared with existing dynamic data structures (octree, R $^\ast$ -tree, and nanoflann k-d tree), ikd-Tree achieves superior overall performance while naturally supports downsampling on the tree. We conduct an exhaustive benchmark comparison in 19 sequences from a variety of open LiDAR datasets. FAST-LIO2 achieves consistently higher accuracy at a much lower computation load than other state-of-the-art LiDAR-inertial navigation systems. Various real-world experiments on solid-state LiDARs with small field of view are also conducted. Overall, FAST-LIO2 is computationally efficient (e.g., up to 100 Hz odometry and mapping in large outdoor environments), robust (e.g., reliable pose estimation in cluttered indoor environments with rotation up to 1000 deg/s), versatile (i.e., applicable to both multiline spinning and solid-state LiDARs, unmanned aerial vehicle (UAV) and handheld platforms, and Intel- and ARM-based processors), while still achieving a higher accuracy than existing methods. Our implementation of the system FAST-LIO2 and the data structure ikd-Tree are both open-sourced on Github.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助俭朴的世界采纳,获得10
1秒前
Imp完成签到,获得积分10
3秒前
maox1aoxin应助张张呀采纳,获得50
3秒前
Themagic完成签到 ,获得积分10
3秒前
Hello应助ray采纳,获得10
3秒前
汉堡包应助王子星痕采纳,获得10
3秒前
Kiyoi完成签到,获得积分10
4秒前
5秒前
6秒前
7秒前
7秒前
小猫爱吃鱼完成签到 ,获得积分10
8秒前
伯松发布了新的文献求助10
9秒前
10秒前
欢喜的之瑶完成签到,获得积分10
11秒前
aiw发布了新的文献求助10
11秒前
12秒前
clearwind完成签到,获得积分10
12秒前
lemon发布了新的文献求助10
12秒前
13秒前
13秒前
包佳梁完成签到,获得积分10
14秒前
evergarden完成签到 ,获得积分10
14秒前
旺旺发布了新的文献求助10
17秒前
17秒前
念心发布了新的文献求助10
17秒前
18秒前
赘婿应助aiw采纳,获得10
18秒前
19秒前
irislee发布了新的文献求助10
19秒前
张_完成签到,获得积分10
20秒前
心屿完成签到,获得积分10
20秒前
小胡好好学习完成签到,获得积分10
20秒前
20秒前
优秀的白卉完成签到,获得积分10
20秒前
20秒前
高兴寒梦完成签到 ,获得积分10
21秒前
英姑应助星魂采纳,获得10
22秒前
酷波er应助口香糖采纳,获得10
23秒前
whuzjw9832完成签到,获得积分10
24秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3245829
求助须知:如何正确求助?哪些是违规求助? 2889464
关于积分的说明 8258504
捐赠科研通 2557814
什么是DOI,文献DOI怎么找? 1386661
科研通“疑难数据库(出版商)”最低求助积分说明 650327
邀请新用户注册赠送积分活动 626685