FAST-LIO2: Fast Direct LiDAR-Inertial Odometry

里程计 激光雷达 树(集合论) 计算机科学 人工智能 水准点(测量) 增采样 算法 模式识别(心理学) 计算机视觉 数学 遥感 图像(数学) 组合数学 地图学 地理 机器人 移动机器人
作者
Wei Xu,Yixi Cai,Dongjiao He,Jiarong Lin,Fu Zhang
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:38 (4): 2053-2073 被引量:707
标识
DOI:10.1109/tro.2022.3141876
摘要

This article presents FAST-LIO2: a fast, robust, and versatile LiDAR-inertial odometry framework. Building on a highly efficient tightly coupled iterated Kalman filter, FAST-LIO2 has two key novelties that allow fast, robust, and accurate LiDAR navigation (and mapping). The first one is directly registering raw points to the map (and subsequently update the map, i.e., mapping) without extracting features. This enables the exploitation of subtle features in the environment and, hence, increases the accuracy. The elimination of a hand-engineered feature extraction module also makes it naturally adaptable to emerging LiDARs of different scanning patterns; the second main novelty is maintaining a map by an incremental k-dimensional (k-d) tree data structure, incremental k-d tree ( ikd-Tree ), that enables incremental updates (i.e., point insertion and delete) and dynamic rebalancing. Compared with existing dynamic data structures (octree, R $^\ast$ -tree, and nanoflann k-d tree), ikd-Tree achieves superior overall performance while naturally supports downsampling on the tree. We conduct an exhaustive benchmark comparison in 19 sequences from a variety of open LiDAR datasets. FAST-LIO2 achieves consistently higher accuracy at a much lower computation load than other state-of-the-art LiDAR-inertial navigation systems. Various real-world experiments on solid-state LiDARs with small field of view are also conducted. Overall, FAST-LIO2 is computationally efficient (e.g., up to 100 Hz odometry and mapping in large outdoor environments), robust (e.g., reliable pose estimation in cluttered indoor environments with rotation up to 1000 deg/s), versatile (i.e., applicable to both multiline spinning and solid-state LiDARs, unmanned aerial vehicle (UAV) and handheld platforms, and Intel- and ARM-based processors), while still achieving a higher accuracy than existing methods. Our implementation of the system FAST-LIO2 and the data structure ikd-Tree are both open-sourced on Github.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
T_MC郭发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
wy18567337203发布了新的文献求助10
1秒前
S7完成签到,获得积分10
1秒前
烟花应助自觉士萧采纳,获得10
2秒前
2秒前
2秒前
2秒前
3秒前
英俊的铭应助duudhdh采纳,获得30
3秒前
3秒前
科研通AI6应助小小采纳,获得30
4秒前
隐形曼青应助小吴同学采纳,获得10
4秒前
4秒前
5秒前
YUDI完成签到,获得积分10
5秒前
大个应助Toby采纳,获得10
5秒前
靓丽的海亦完成签到,获得积分10
5秒前
dazzlejj发布了新的文献求助10
5秒前
糖糖应助New采纳,获得10
5秒前
慕容松完成签到,获得积分10
6秒前
雪白千山发布了新的文献求助10
6秒前
Orange应助风中冰香采纳,获得20
6秒前
玺白白应助显赫一世采纳,获得10
6秒前
peanut发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
7秒前
zz完成签到,获得积分10
7秒前
ACE发布了新的文献求助10
8秒前
8秒前
雪花发布了新的文献求助10
8秒前
德瓦达达娃完成签到,获得积分10
9秒前
吕吕吕发布了新的文献求助100
9秒前
kelly发布了新的文献求助10
9秒前
霸气南珍发布了新的文献求助10
9秒前
蜂鸟5156发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5082142
求助须知:如何正确求助?哪些是违规求助? 4299568
关于积分的说明 13396361
捐赠科研通 4123386
什么是DOI,文献DOI怎么找? 2258311
邀请新用户注册赠送积分活动 1262584
关于科研通互助平台的介绍 1196616