清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DSS: A hybrid deep model for fake news detection using propagation tree and stance network

杠杆(统计) 计算机科学 编码 树(集合论) 社会化媒体 数据挖掘 领域(数学) 图形 机器学习 背景(考古学) 人工智能 理论计算机科学 万维网 基因 生物 数学分析 古生物学 化学 纯数学 生物化学 数学
作者
Mansour Davoudi,Mohammad R. Moosavi,Mohammad Hadi Sadreddini
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:198: 116635-116635 被引量:67
标识
DOI:10.1016/j.eswa.2022.116635
摘要

Nowadays, online social media play a significant role in news broadcasts due to their convenience, speed, and accessibility. Social media platforms leverage the rapid production of a large volume of information and cause the propagation of untrustworthy and fake news. Since fake news is engineered to deceive a wide range of readers deliberately, it is not easy to detect them merely based on the news content. Hence, more information, such as the social context, is needed. Moreover, to limit the impact of fake news on society, it is essential to detect them as early as possible. In this paper, we have developed an automated system “DSS” for the early detection of fake news wherein we leverage the propagation tree and the stance network simultaneously and dynamically. Our proposed model comprises three major components: Dynamic analysis, Static analysis, and Structural analysis. During dynamic analysis, a recurrent neural network is used to encode the evolution pattern of the propagation tree and the stance network over time. The static analysis uses a fully connected network to precisely represent the overall characteristics of the propagation tree and the stance network at the end of a detection deadline. The node2vec algorithm is used during structural analysis as a graph embedding model to encode the structure of the propagation tree and the stance network. Finally, the outputs of these components are aggregated to determine the veracity of the news articles. Our proposed model is evaluated on the FakeNewsNet repository, comprising two recent well-known datasets in the field, namely PolitiFact and GossipCop. Our results show encouraging performance, outperforming the state-of-the-art methods by 8.2% on the PolitiFact and 3% on the GossipCop datasets. Early detection of fake news is the merit of the proposed model. The DSS model provides outstanding accuracy in the early stages of spreading, as well as the later stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
emxzemxz完成签到 ,获得积分10
3秒前
争气完成签到 ,获得积分10
5秒前
bobo发布了新的文献求助10
5秒前
zww完成签到,获得积分10
11秒前
xwl9955完成签到 ,获得积分10
18秒前
花生仔应助CompJIN采纳,获得20
20秒前
科研通AI2S应助strzeng采纳,获得10
25秒前
25秒前
zww发布了新的文献求助10
30秒前
CompJIN完成签到,获得积分10
36秒前
酷波er应助Benhnhk21采纳,获得10
38秒前
46秒前
量子星尘发布了新的文献求助10
48秒前
hmhu完成签到,获得积分10
49秒前
hmhu发布了新的文献求助10
52秒前
任伟超完成签到,获得积分10
55秒前
胡萝卜完成签到,获得积分10
57秒前
57秒前
Benhnhk21发布了新的文献求助10
1分钟前
jyy应助科研通管家采纳,获得10
1分钟前
jyy应助科研通管家采纳,获得10
1分钟前
jyy应助科研通管家采纳,获得10
1分钟前
1分钟前
CR完成签到 ,获得积分10
1分钟前
janice发布了新的文献求助10
1分钟前
雷小牛完成签到 ,获得积分10
1分钟前
1分钟前
janice完成签到,获得积分10
1分钟前
奋斗的杰发布了新的文献求助10
1分钟前
浚稚完成签到 ,获得积分10
1分钟前
康康舞曲完成签到 ,获得积分10
1分钟前
奋斗的杰完成签到,获得积分10
1分钟前
珍珠火龙果完成签到 ,获得积分10
1分钟前
现实的小霸王完成签到 ,获得积分20
2分钟前
2分钟前
wushuimei完成签到 ,获得积分10
2分钟前
yuna_yqc完成签到 ,获得积分10
2分钟前
2分钟前
高高魂幽发布了新的文献求助20
2分钟前
DrLuffy完成签到 ,获得积分10
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957101
求助须知:如何正确求助?哪些是违规求助? 3503115
关于积分的说明 11111359
捐赠科研通 3234212
什么是DOI,文献DOI怎么找? 1787802
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802292