DSS: A hybrid deep model for fake news detection using propagation tree and stance network

杠杆(统计) 计算机科学 编码 树(集合论) 社会化媒体 数据挖掘 领域(数学) 图形 机器学习 背景(考古学) 人工智能 理论计算机科学 万维网 基因 生物 数学分析 古生物学 化学 纯数学 生物化学 数学
作者
Mansour Davoudi,Mohammad R. Moosavi,Mohammad Hadi Sadreddini
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:198: 116635-116635 被引量:67
标识
DOI:10.1016/j.eswa.2022.116635
摘要

Nowadays, online social media play a significant role in news broadcasts due to their convenience, speed, and accessibility. Social media platforms leverage the rapid production of a large volume of information and cause the propagation of untrustworthy and fake news. Since fake news is engineered to deceive a wide range of readers deliberately, it is not easy to detect them merely based on the news content. Hence, more information, such as the social context, is needed. Moreover, to limit the impact of fake news on society, it is essential to detect them as early as possible. In this paper, we have developed an automated system “DSS” for the early detection of fake news wherein we leverage the propagation tree and the stance network simultaneously and dynamically. Our proposed model comprises three major components: Dynamic analysis, Static analysis, and Structural analysis. During dynamic analysis, a recurrent neural network is used to encode the evolution pattern of the propagation tree and the stance network over time. The static analysis uses a fully connected network to precisely represent the overall characteristics of the propagation tree and the stance network at the end of a detection deadline. The node2vec algorithm is used during structural analysis as a graph embedding model to encode the structure of the propagation tree and the stance network. Finally, the outputs of these components are aggregated to determine the veracity of the news articles. Our proposed model is evaluated on the FakeNewsNet repository, comprising two recent well-known datasets in the field, namely PolitiFact and GossipCop. Our results show encouraging performance, outperforming the state-of-the-art methods by 8.2% on the PolitiFact and 3% on the GossipCop datasets. Early detection of fake news is the merit of the proposed model. The DSS model provides outstanding accuracy in the early stages of spreading, as well as the later stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星星发布了新的文献求助10
刚刚
酷炫的归尘完成签到,获得积分10
1秒前
领导范儿应助路寻采纳,获得10
1秒前
Llllllllily应助平常马里奥采纳,获得10
1秒前
务实水池完成签到,获得积分10
2秒前
mmmi发布了新的文献求助10
3秒前
一二完成签到 ,获得积分10
3秒前
3秒前
夹心完成签到,获得积分10
3秒前
浮游应助热情的远锋采纳,获得10
3秒前
Lucas应助小飞鼠采纳,获得10
4秒前
departure完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助30
4秒前
菜菜完成签到,获得积分10
5秒前
长情白柏发布了新的文献求助10
5秒前
Yuuuuu完成签到,获得积分10
6秒前
小青椒应助llt采纳,获得30
7秒前
虚拟的煜祺完成签到,获得积分10
7秒前
DZWyyyy完成签到,获得积分20
8秒前
我是老大应助陶醉平灵采纳,获得10
9秒前
雪白冥茗发布了新的文献求助30
9秒前
科研通AI2S应助热情的远锋采纳,获得10
10秒前
CCH发布了新的文献求助10
10秒前
10秒前
健壮的芷容完成签到,获得积分10
11秒前
12秒前
刻苦藏今完成签到,获得积分20
12秒前
乐乐应助诡异乐园采纳,获得10
12秒前
共享精神应助巧语采纳,获得10
14秒前
顾矜应助巧语采纳,获得10
14秒前
小二郎应助巧语采纳,获得10
14秒前
科研通AI2S应助巧语采纳,获得10
14秒前
Akim应助啾星采纳,获得10
14秒前
星辰大海应助巧语采纳,获得10
14秒前
澄钰羽完成签到,获得积分10
15秒前
扶风发布了新的文献求助10
15秒前
媛小媛啊发布了新的文献求助10
15秒前
小青椒应助xlarrow采纳,获得60
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424683
求助须知:如何正确求助?哪些是违规求助? 4539082
关于积分的说明 14165073
捐赠科研通 4456131
什么是DOI,文献DOI怎么找? 2444042
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412483