DSS: A hybrid deep model for fake news detection using propagation tree and stance network

杠杆(统计) 计算机科学 编码 树(集合论) 社会化媒体 数据挖掘 领域(数学) 图形 机器学习 背景(考古学) 人工智能 理论计算机科学 万维网 基因 生物 数学分析 古生物学 化学 纯数学 生物化学 数学
作者
Mansour Davoudi,Mohammad R. Moosavi,Mohammad Hadi Sadreddini
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:198: 116635-116635 被引量:67
标识
DOI:10.1016/j.eswa.2022.116635
摘要

Nowadays, online social media play a significant role in news broadcasts due to their convenience, speed, and accessibility. Social media platforms leverage the rapid production of a large volume of information and cause the propagation of untrustworthy and fake news. Since fake news is engineered to deceive a wide range of readers deliberately, it is not easy to detect them merely based on the news content. Hence, more information, such as the social context, is needed. Moreover, to limit the impact of fake news on society, it is essential to detect them as early as possible. In this paper, we have developed an automated system “DSS” for the early detection of fake news wherein we leverage the propagation tree and the stance network simultaneously and dynamically. Our proposed model comprises three major components: Dynamic analysis, Static analysis, and Structural analysis. During dynamic analysis, a recurrent neural network is used to encode the evolution pattern of the propagation tree and the stance network over time. The static analysis uses a fully connected network to precisely represent the overall characteristics of the propagation tree and the stance network at the end of a detection deadline. The node2vec algorithm is used during structural analysis as a graph embedding model to encode the structure of the propagation tree and the stance network. Finally, the outputs of these components are aggregated to determine the veracity of the news articles. Our proposed model is evaluated on the FakeNewsNet repository, comprising two recent well-known datasets in the field, namely PolitiFact and GossipCop. Our results show encouraging performance, outperforming the state-of-the-art methods by 8.2% on the PolitiFact and 3% on the GossipCop datasets. Early detection of fake news is the merit of the proposed model. The DSS model provides outstanding accuracy in the early stages of spreading, as well as the later stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuanwu发布了新的文献求助10
1秒前
1秒前
无花果应助摆哥采纳,获得10
1秒前
馒头酶完成签到,获得积分10
2秒前
xue完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
zhaomr完成签到,获得积分10
4秒前
4秒前
watercolding发布了新的文献求助10
4秒前
zsp发布了新的文献求助10
5秒前
金志铭驳回了852应助
5秒前
不倦应助xuanwu采纳,获得10
7秒前
无花果应助xjl采纳,获得10
8秒前
orchid发布了新的文献求助10
8秒前
孝顺的白薇完成签到,获得积分20
8秒前
lily完成签到,获得积分20
9秒前
蓝溺应助ltxinanjiao采纳,获得30
10秒前
大模型应助watercolding采纳,获得10
10秒前
溏心蛋完成签到,获得积分10
10秒前
11秒前
开心的火龙果完成签到,获得积分10
12秒前
12秒前
Sandy完成签到 ,获得积分10
13秒前
彭于晏应助肖遥采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
Ww应助科研通管家采纳,获得10
14秒前
风吹麦田应助科研通管家采纳,获得30
14秒前
无花果应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
香蕉觅云应助孝顺的白薇采纳,获得10
14秒前
14秒前
科研通AI6应助科研通管家采纳,获得80
14秒前
Jeff_Lin应助科研通管家采纳,获得10
14秒前
今后应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
15秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226445
求助须知:如何正确求助?哪些是违规求助? 4397958
关于积分的说明 13687854
捐赠科研通 4262492
什么是DOI,文献DOI怎么找? 2339139
邀请新用户注册赠送积分活动 1336507
关于科研通互助平台的介绍 1292544