亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DSS: A hybrid deep model for fake news detection using propagation tree and stance network

杠杆(统计) 计算机科学 编码 树(集合论) 社会化媒体 数据挖掘 领域(数学) 图形 机器学习 背景(考古学) 人工智能 理论计算机科学 万维网 基因 生物 数学分析 古生物学 化学 纯数学 生物化学 数学
作者
Mansour Davoudi,Mohammad Reza Moosavi,Mohammad Hadi Sadreddini
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:198: 116635-116635 被引量:39
标识
DOI:10.1016/j.eswa.2022.116635
摘要

Nowadays, online social media play a significant role in news broadcasts due to their convenience, speed, and accessibility. Social media platforms leverage the rapid production of a large volume of information and cause the propagation of untrustworthy and fake news. Since fake news is engineered to deceive a wide range of readers deliberately, it is not easy to detect them merely based on the news content. Hence, more information, such as the social context, is needed. Moreover, to limit the impact of fake news on society, it is essential to detect them as early as possible. In this paper, we have developed an automated system “DSS” for the early detection of fake news wherein we leverage the propagation tree and the stance network simultaneously and dynamically. Our proposed model comprises three major components: Dynamic analysis, Static analysis, and Structural analysis. During dynamic analysis, a recurrent neural network is used to encode the evolution pattern of the propagation tree and the stance network over time. The static analysis uses a fully connected network to precisely represent the overall characteristics of the propagation tree and the stance network at the end of a detection deadline. The node2vec algorithm is used during structural analysis as a graph embedding model to encode the structure of the propagation tree and the stance network. Finally, the outputs of these components are aggregated to determine the veracity of the news articles. Our proposed model is evaluated on the FakeNewsNet repository, comprising two recent well-known datasets in the field, namely PolitiFact and GossipCop. Our results show encouraging performance, outperforming the state-of-the-art methods by 8.2% on the PolitiFact and 3% on the GossipCop datasets. Early detection of fake news is the merit of the proposed model. The DSS model provides outstanding accuracy in the early stages of spreading, as well as the later stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Andy_2024完成签到,获得积分10
4秒前
Summer完成签到 ,获得积分10
20秒前
Migue发布了新的文献求助200
41秒前
月军完成签到,获得积分10
2分钟前
he~tui~~发布了新的文献求助10
3分钟前
3分钟前
he~tui~~完成签到,获得积分10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
麻花阳发布了新的文献求助30
4分钟前
科研通AI2S应助Migue采纳,获得10
4分钟前
麻花阳完成签到,获得积分10
4分钟前
4分钟前
5分钟前
程翠丝完成签到,获得积分10
5分钟前
Panther完成签到,获得积分10
5分钟前
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
6分钟前
小乙猪完成签到 ,获得积分0
6分钟前
浦东江边种树人完成签到,获得积分10
6分钟前
6分钟前
7分钟前
爱静静应助科研通管家采纳,获得10
7分钟前
爱静静应助科研通管家采纳,获得10
7分钟前
vkk完成签到 ,获得积分10
8分钟前
9分钟前
9分钟前
11分钟前
栗子发布了新的文献求助10
11分钟前
11分钟前
JiangHan发布了新的文献求助10
11分钟前
JiangHan完成签到,获得积分20
11分钟前
凌露完成签到 ,获得积分0
11分钟前
ranj完成签到,获得积分10
12分钟前
12分钟前
一只松子发布了新的文献求助10
12分钟前
13分钟前
高分求助中
Evolution 10000
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158649
求助须知:如何正确求助?哪些是违规求助? 2809798
关于积分的说明 7883707
捐赠科研通 2468521
什么是DOI,文献DOI怎么找? 1314279
科研通“疑难数据库(出版商)”最低求助积分说明 630575
版权声明 601983