Comparison of Artificial Intelligence-Based Machine Learning Classifiers for Early Detection of Keratoconus

圆锥角膜 医学 眼科 角膜 扩张 接收机工作特性 验光服务 外科 内科学
作者
Mehrdad Mohammadpour,Zahra Heidari,Hassan Hashemi,Mehdi Yaseri,Akbar Fotouhi
出处
期刊:European Journal of Ophthalmology [SAGE]
卷期号:32 (3): 1352-1360 被引量:14
标识
DOI:10.1177/11206721211073442
摘要

To compare the agreement between artificial intelligence (AI)-based classifiers and clinical experts in categorizing normal cornea from ectatic conditions.Prospective diagnostic test study at Noor Eye Hospital. Two hundred twelve eyes of 212 patients were categorized into three groups of 92 normal, 52 subclinical keratoconus (SKCN), and 68 KCN eyes based on clinical findings by 3 independent expert examiners. All cases were then categorized using four different classifiers: Pentacam Belin/Ambrosio enhanced ectasia total deviation value (BADD) and Topographic Keratoconus Classification (TKC), Sirius Phoenix, and OPD-Scan III Corneal Navigator. The performance of classifiers and their agreement with expert opinion were investigated using the sensitivity, specificity, and Kappa index (κ).For detecting SKCN, Phoenix had the highest agreement with the clinical diagnosis (sensitivity, specificity, and κ of 84.62%, 90.0%, and 0.70, respectively) followed by BADD (55.56%, 86.08%, 0.42), TKC (26.92%, 97.50%, 0.30), and Corneal Navigator (30.77%, 93.75%, 0.29). For KCN diagnosis, the highest agreement with expert opinion was seen for Phoenix (80.02%, 96.60%, 0.79), BADD (95.59%, 85.42%, 0.75), TKC (95.59%, 84.03%, 0.73), and Corneal Navigator (67.65%, 96.45%, 0.68). Analysis of different classifiers showed that Phoenix had the highest accuracy for differentiating KCN (91.24%) and SKCN (88.68%) compared to other classifiers.Although AI-based classifiers, especially Sirius Phoenix, can be very helpful in detecting early keratoconus, they cannot replace clinical experts' opinions, particularly for decision-making before refractive surgery. Albeit, there may be concerns about the accuracy of clinical experts as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
麻花精发布了新的文献求助10
4秒前
4秒前
7秒前
妮妮完成签到,获得积分10
7秒前
LuckyHerly完成签到,获得积分10
8秒前
孝顺的雁芙完成签到,获得积分10
8秒前
坤wkl发布了新的文献求助10
8秒前
nix关注了科研通微信公众号
9秒前
旧安江人完成签到,获得积分10
9秒前
博修发布了新的文献求助10
10秒前
无花果应助zele女士采纳,获得10
10秒前
hanyudeshu应助梧桐树采纳,获得10
12秒前
NONO完成签到,获得积分10
13秒前
14秒前
ZYN完成签到,获得积分20
15秒前
慕青应助whiteside采纳,获得10
16秒前
16秒前
orixero应助可耐的玉米采纳,获得10
17秒前
青菜完成签到,获得积分10
17秒前
Zz完成签到 ,获得积分10
17秒前
乐乐乐乐乐乐应助妮妮采纳,获得10
17秒前
Robigo发布了新的文献求助10
17秒前
chali48完成签到 ,获得积分10
18秒前
大模型应助23xyke采纳,获得10
19秒前
lili完成签到 ,获得积分10
19秒前
无语发布了新的文献求助10
19秒前
斯文败类应助zz采纳,获得10
21秒前
joshar发布了新的文献求助10
21秒前
22秒前
nix发布了新的文献求助50
22秒前
Jingyi完成签到 ,获得积分10
23秒前
pluto应助是木易呀采纳,获得10
24秒前
24秒前
25秒前
27秒前
无情凡桃发布了新的文献求助10
28秒前
唐小鸭发布了新的文献求助10
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292382
求助须知:如何正确求助?哪些是违规求助? 2928703
关于积分的说明 8438278
捐赠科研通 2600816
什么是DOI,文献DOI怎么找? 1419277
科研通“疑难数据库(出版商)”最低求助积分说明 660268
邀请新用户注册赠送积分活动 642921