A General Strategy to Immobilize Single‐Atom Catalysts in Metal–Organic Frameworks for Enhanced Photocatalysis

催化作用 光催化 材料科学 密度泛函理论 纳米技术 纳米颗粒 金属有机骨架 Atom(片上系统) 金属 化学工程 组合化学 计算化学 物理化学 化学 吸附 有机化学 冶金 嵌入式系统 工程类 计算机科学
作者
Jianfei Sui,Hang Liu,Shao‐Jin Hu,Kang Sun,Gang Wan,Hua Zhou,Xiao Zheng,Hai‐Long Jiang
出处
期刊:Advanced Materials [Wiley]
卷期号:34 (6) 被引量:133
标识
DOI:10.1002/adma.202109203
摘要

Single-atom catalysts (SACs) are witnessing rapid development due to their high activity and selectivity toward diverse reactions. However, it remains a grand challenge in the general synthesis of SACs, particularly featuring an identical chemical microenvironment and on the same support. Herein, a universal synthetic protocol is developed to immobilize SACs in metal-organic frameworks (MOFs). Significantly, by means of SnO2 as a mediator or adaptor, not only different single-atom metal sites, such as Pt, Cu, and Ni, etc., can be installed, but also the MOF supports can be changed (for example, UiO-66-NH2 , PCN-222, and DUT-67) to afford M1 /SnO2 /MOF architecture. Taking UiO-66-NH2 as a representative, the Pt1 /SnO2 /MOF exhibits approximately five times higher activity toward photocatalytic H2 production than the corresponding Pt nanoparticles (≈2.5 nm) stabilized by SnO2 /UiO-66-NH2 . Remarkably, despite featuring identical parameters in the chemical microenvironment and support in M1 /SnO2 /UiO-66-NH2 , the Pt1 catalyst possesses a hydrogen evolution rate of 2167 µmol g-1 h-1 , superior to the Cu1 and Ni1 counterparts, which is attributed to the differentiated hydrogen binding free energies, as supported by density-functional theory (DFT) calculations. This is thought to be the first report on a universal approach toward the stabilization of SACs with identical chemical microenvironment on an identical support.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
于嗣濠完成签到 ,获得积分10
1秒前
36456657应助CC采纳,获得10
1秒前
优雅山柏发布了新的文献求助10
2秒前
Jacky完成签到,获得积分10
2秒前
脑洞疼应助无情的白桃采纳,获得10
2秒前
mm发布了新的文献求助10
2秒前
3秒前
3秒前
zoko发布了新的文献求助10
3秒前
3秒前
曾经的臻发布了新的文献求助10
3秒前
华仔应助S1mple_gentleman采纳,获得10
3秒前
科研通AI5应助CC采纳,获得10
3秒前
3秒前
4秒前
4秒前
张静静完成签到,获得积分10
5秒前
5秒前
震666发布了新的文献求助30
5秒前
MADKAI发布了新的文献求助10
5秒前
5秒前
117发布了新的文献求助10
5秒前
6秒前
6秒前
酶没美镁完成签到,获得积分10
6秒前
小二郎应助Rui采纳,获得10
6秒前
Libra完成签到,获得积分10
7秒前
雪儿发布了新的文献求助30
7秒前
无悔呀发布了新的文献求助10
7秒前
小巧的可仁完成签到 ,获得积分10
7秒前
7秒前
zhao完成签到,获得积分10
8秒前
masu发布了新的文献求助10
8秒前
冷酷尔琴发布了新的文献求助10
9秒前
Ll发布了新的文献求助10
9秒前
优雅山柏完成签到,获得积分10
9秒前
XinyiZhang发布了新的文献求助10
9秒前
小蘑菇应助yangyang采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740