Do model choice and sample ratios separately or simultaneously influence soil organic matter prediction?

样品(材料) 统计 克里金 样本量测定 线性回归 回归分析 回归 数学 环境科学 分位数 土壤有机质 计量经济学 土壤科学 土壤水分 化学 色谱法
作者
Kingsley John,Yassine Bouslıhım,Kokei Ikpi Ofem,Lahcen Hssaini,Rachid Razouk,Paul B. Okon,Isong Abraham Isong,Prince Chapman Agyeman,Ndiye Michael Kebonye,Cheng‐Zhi Qin
出处
期刊:International Soil and Water Conservation Research [Elsevier BV]
卷期号:10 (3): 470-486 被引量:5
标识
DOI:10.1016/j.iswcr.2021.11.003
摘要

This study was performed to examine the separate and simultaneous influence of predictive models’ choice alongside sample ratios selection in soil organic matter (SOM). The research was carried out in northern Morocco, characterized by relatively cold weather and diverse geological conditions. The dataset herein used accounted for 1591 soil samples, which were randomly split into the following ratios: 10% (∼150 sample ratio), 20% (∼250 sample ratio), 35% (∼450 sample ratio), 50% (∼600 sample ratio) and 95% (∼1200 sample ratio). Models herein involved were ordinary kriging (OK), regression kriging (RK), multiple linear regression (MLR), random forest (RF), quantile regression forest (QRF), Gaussian process regression (GPR) and an ensemble model. The findings in the study showed that the accuracy of SOM prediction is sensitive to both predictive models and sample ratios. OK combined with 95% sample ratio performed equally to RF in conjunction with all the sample ratios, as the latter did not show much sensitivity to sample ratios. ANOVA results revealed that RF with a ∼10% sample ratio could also be optimum for predicting SOM in the study area. In conclusion, the findings herein reported could be instrumental for producing cost-effective detailed and accurate spatial estimation of SOM in other sites. Furthermore, they could serve as a baseline study for future research in the region or elsewhere. Therefore, we recommend conducting series of simulation of all possible combinations between various predictive models and sample ratios as a preliminary step in soil organic matter prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nan应助foxuan采纳,获得10
刚刚
花南星完成签到,获得积分10
1秒前
1秒前
神勇秋白发布了新的文献求助10
2秒前
传统的雨文完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
研友_VZG7GZ应助宫野珏采纳,获得10
4秒前
彪壮的冷霜完成签到,获得积分10
4秒前
肚子藤完成签到,获得积分10
5秒前
英俊迎波发布了新的文献求助10
5秒前
小王梓发布了新的文献求助10
6秒前
7秒前
XY完成签到,获得积分10
8秒前
gege完成签到,获得积分10
8秒前
10秒前
10秒前
oneday完成签到,获得积分10
11秒前
11秒前
清无发布了新的文献求助50
13秒前
CJN完成签到,获得积分10
14秒前
14秒前
寒冷的电脑完成签到 ,获得积分10
14秒前
科研通AI5应助oneday采纳,获得10
14秒前
小蘑菇应助Precious采纳,获得10
15秒前
17秒前
神勇秋白发布了新的文献求助10
17秒前
英俊迎波完成签到,获得积分10
17秒前
qin202569发布了新的文献求助10
18秒前
三水完成签到 ,获得积分10
18秒前
QQ星完成签到,获得积分20
19秒前
隐形曼青应助AnJaShua采纳,获得200
19秒前
胖川发布了新的文献求助10
19秒前
changping应助曹志伟采纳,获得10
20秒前
慕青应助violet采纳,获得30
22秒前
23秒前
进退须臾完成签到,获得积分10
24秒前
雄鹰般的女人完成签到,获得积分10
24秒前
24秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207759
求助须知:如何正确求助?哪些是违规求助? 4385596
关于积分的说明 13657629
捐赠科研通 4244284
什么是DOI,文献DOI怎么找? 2328727
邀请新用户注册赠送积分活动 1326487
关于科研通互助平台的介绍 1278577